skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quinoline-annulated porphyrin platinum complexes as NIR emitters
The platinum(II) complexes of known quinoline-annulated porphyrins were prepared and spectroscopically characterized. Their optical properties (UV-vis absorption and phosphorescence spectra and phosphorescence lifetimes) were recorded and contrasted against their 2,3-dioxoporphyrin precursor platinum(II) complex. The absorbance and emission spectra (in EtOH glass at 77 K) of the quinoline-annulated porphyrins fall within the NIR optical window of tissue, ranging, depending on the derivative, between [Formula: see text]950 and 1200 nm. The much red-shifted optical spectra, when compared to their non-quinoline-annulated precursors, are attributed to the [Formula: see text]-extension and conformational non-planarity that the annulation causes. The emission yields of the mono-quinoline-annulated derivatives are too low and their lifetimes too short to be practical emitters, but the bis-annulated derivative possesses a practical lifetime and emission yield, suggesting its further exploration, particularly since the methodology toward the solubilization of the quinoline-annulated porphyrins in biological media through derivatization is known.  more » « less
Award ID(s):
1800361
PAR ID:
10149028
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Porphyrins and Phthalocyanines
Volume:
24
Issue:
01n03
ISSN:
1088-4246
Page Range / eLocation ID:
386 to 393
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract An intramolecular SNAr displacement of oneo‐fluorine atom of ameso‐pentafluorophenyl‐substituted porphyrin metal complex by a neighboring β‐amino functionality generated the correspondingmeso‐fluorophenyl‐substituted metallo‐quinolino[2,3,4‐at]porphyrins that are not accessible using established quinoline‐annulation methodologies. The Cu(II), Ni(II), and Zn(II) complexes were thus prepared. The parent free base quinolino[2,3,4‐at]porphyrin is accessible only by demetallation of the copper or zinc complexes. A strong through‐space NMR‐spectroscopic coupling between the remainingo‐fluorine atoms on the annulatedmeso‐aryl group and the β‐hydrogen atom on the adjacent pyrrole moiety provide a clear spectroscopic signature for the annulation. Quinoline‐annulation alters the optical properties significantly. On account of the presence of the β‐amino functionality, all quinoline‐annulated porphyrins show strong halochromic responses with Brønsted acids and bases, the prerequisite for their potential use in chemosensing applications. 
    more » « less
  2. Novel tetraaryl-(pyridinium-4-yl)-tetrabenzoporphyrins have been successfully synthesized via a Heck-based sequence reaction. These tetrabenzoporphyrins were substituted with eight pyridyl groups at the fused benzene rings. Methylation of the pyridyl groups with methyl iodide afforded highly water soluble tetrabenzoporphyrins carrying eight ionic groups. The extended [Formula: see text]-conjugation broadened and red-shifted the absorption band of these porphyrins to 650–750 nm. These cationic tetrabenzoporphyrins showed non-toxicity in the dark up to 100 uM. High phototoxicity with IC[Formula: see text] values lower than 18 [Formula: see text]M were obtained for these tetrabenzoporphyrins. 
    more » « less
  3. null (Ed.)
    Dyads containing two near-infrared absorbing and emitting bacteriochlorins with distinct spectral properties have been prepared and characterized by absorption, emission, and transient-absorption spectroscopies. The dyads exhibit ultrafast ([Formula: see text]3 ps) energy transfer from the bacteriochlorin with the higher-energy S 1 state to the bacteriochlorin emitting at the longer wavelength. The dyads exhibit strong fluorescence and relatively long excited state lifetimes ([Formula: see text]4 ns) in both non-polar and polar solvents, which indicates negligible photoinduced electron transfer between the two bacteriochlorins in the dyads. These dyads are thus attractive for the development of light-harvesting arrays and fluorophores for in vivo bioimaging. 
    more » « less
  4. Hybrid complexes incorporating synthetic Mn-porphyrins into an artificial four-helix bundle domain of bacterial reaction centers created a system to investigate new electron transfer pathways. The reactions were initiated by illumination of the bacterial reaction centers, whose primary photochemistry involves electron transfer from the bacteriochlorophyll dimer through a series of electron acceptors to the quinone electron acceptors. Porphyrins with diphenyl, dimesityl, or fluorinated substituents were synthesized containing either Mn or Zn. Electrochemical measurements revealed potentials for Mn(III)/Mn(II) transitions that are ~ 0.4 V higher for the fluorinated Mn-porphyrins than the diphenyl and dimesityl Mn-porphyrins. The synthetic porphyrins were introduced into the proteins by binding to a four-helix bundle domain that was genetically fused to the reaction center. Light excitation of the bacteriochlorophyll dimer of the reaction center resulted in new derivative signals, in the 400 to 450 nm region of light-minus-dark spectra, that are consistent with oxidation of the fluorinated Mn(II) porphyrins and reduction of the diphenyl and dimesityl Mn(III) porphyrins. These features recovered in the dark and were not observed in the Zn(II) porphyrins. The amplitudes of the signals were dependent upon the oxidation/reduction midpoint potentials of the bacteriochlorophyll dimer. These results are interpreted as photo-induced charge-separation processes resulting in redox changes of the Mn-porphyrins, demonstrating the utility of the hybrid artificial reaction center system to establish design guidelines for novel electron transfer reactions. 
    more » « less
  5. The strong spin–orbit coupling (SOC) in lead halide perovskites, when inversion symmetry is lifted, has provided opportunities for investigating the Rashba effect in these systems. Moreover, the strong orbital moment, which, in turn, impacts the spin-pair in singlet and triplet electronic states, plays a significant role in enhancing the optoelectronic properties in the presence of external magnetic fields in lead halide perovskites. Here, we investigate the effect of weak magnetic fields (<1 T) on the photoluminescence (PL) properties of [Formula: see text] nanocrystals with and without Ruddlesden–Popper (RP) faults and single crystals of [Formula: see text]. Along with an enhancement in the PL intensity as a function of an external magnetic field, which is observed in both lead bromide perovskites, the PL emission red-shifts in [Formula: see text] nanocrystals. Density-functional theory calculations of the electronic band-edge in [Formula: see text] show almost no change in the energy gap as a function of the external magnetic field. The experimental results, thus, suggest the role of mixing of the triplet and singlet excitonic states under weak magnetic fields. This is further deduced from an enhancement in PL lifetimes as a function of the field in [Formula: see text]. In [Formula: see text], an increase in PL intensity is observed under weak magnetic fields; however, no changes in the peak energy or PL lifetimes are observed. The internal magnetic fields due to SOC are characterized for all three samples and found to be the highest for [Formula: see text] nanocrystals with RP faults. 
    more » « less