skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sustainability and Life Cycle Product Design (Chapter 22)
This chapter addresses problems that arise during product design for sustainability 5 and the life cycle. A description of the problem itself is provided from an industrial 6 engineering viewpoint. The first section describes the problem elements, including 7 the need to expand the set of conflicting objectives under consideration, the need to 8 consider the entire product life cycle, the need to employ new data acquisition tools, 9 and the need to investigate the complex role of consumer behavior before, during, 10 and after the point of purchase. Subsequent sections summarize work the authors 11 have done towards solving these problems. A general mathematical programming 12 framework is first presented. This chapter highlights several instances of the benefits 13 of bringing the logic and mathematical rigor of industrial engineering methods 14 to these problems. The authors’ previous contributions to sustainable design are 15 presented and include defining the concept of the product life cycle from a decision- 16 based design point of view, developing different types of decision-making tech- 17 niques for engineering design (both subjective and objective), normative decision 18 analytic methods (e.g., multiattribute utility, constrained optimization), methods 19 for environmentally conscious design to cover new environmental objectives (e.g., 20 connection of design with the end-of-use phase), and immersive computing tech- 21 nologies to address challenges with information-intensive design procedures. The 22 final section presents methods to consider heterogeneous consumer behavior during 23 product selection, use, and disposal.  more » « less
Award ID(s):
1705621 1727190
PAR ID:
10106440
Author(s) / Creator(s):
; ;  
Date Published:
Journal Name:
Women in Industrial and Systems Engineering Key Advances and Perspectives on Emerging Topics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The world faces an increasing need to phase out harmful chemicals and design sustainable alternatives across various consumer products and industrial applications. Alternatives assessment is an emerging field with focus on identifying viable solutions to substitute harmful chemicals. However, current methods fail to consider trade-offs from human and ecosystem exposures, and from impacts associated with chemical supply chains and product life cycles. To close this gap, we propose a life cycle based alternatives assessment (LCAA) framework for consistently integrating quantitative exposure and life cycle impact performance in the substitution process. We start with a pre-screening based on function-related decision rules, followed by three progressive tiers from (1) rapid risk screening of various alternatives for the consumer use stage, to (2) an assessment of chemical supply chain impacts for selected alternatives with substantially different synthesis routes, and (3) an assessment of product life cycle impacts for alternatives with substantially different product life cycles. Each tier focuses on relevant impacts and uses streamlined assessment methods. While the initial risk screening will be sufficient for evaluating chemicals with similar supply chains, each additional tier helps further restricting the number of viable solutions, while avoiding unacceptable trade-offs. We test our LCAA framework in a proof-of-concept case study for identifying suitable alternatives to a harmful plasticizer in household flooring. Results show that the use stage dominates human health impacts across alternatives, supporting that a rapid risk screening is sufficient unless very different supply chains or a broader set of alternative materials or technologies are considered. Combined with currently used indicators for technical and economic performance, our LCAA framework is suitable for informing function-based substitution at the level of chemicals, materials and product applications to foster green and sustainable chemistry solutions. 
    more » « less
  2. Efficient disassembly operation is considered a promising approach toward waste reduction and End-of-Use (EOU) product recovery. However, many kinds of uncertainty exist during the product lifecycle which make disassembly decision a complicated process. The optimum disassembly sequence may vary at different milestones depending on the purpose of disassembly (repair, maintenance, reuse and recovery), product quality conditions and external factors such as consumer preference, and the market value of EOU components. A disassembly sequence which is optimum for one purpose may not be optimum in future life cycles or other purposes. Therefore, there is a need for incorporating the requirements of the entire product life-cycle when obtaining the optimum disassembly sequence. This paper applies a fuzzy method to quantify the probability that each feasible disassembly transition will be needed during the entire product lifecycle. Further, the probability values have been used in an optimization model to find the disassembly sequence with maximum likelihood. An example of vacuum cleaner is used to show how the proposed method can be applied to quantify different users’ evaluation on the relative importance of disassembly selection criteria as well as the probability of each disassembly operation. 
    more » « less
  3. Global concerns about climate change and resource management have escalated the need for sustainable consumer products. In light of this, sustainable design methodologies that supplement the product design process are needed. Current research focuses on developing sustainable design curricula, adapting classical design methods to accommodate environmental sustainability, and sustainability tools that are applicable during the early design phase. However, concurrent work suggests that sustainability-marketed and innovative products still lack a reduction of environmental impact compared to conventional products. Life cycle assessment (LCA) has proven to be an exceptional tool used to assess the environmental impact of a realized product. However, LCA is a reactive tool that does not proactively reduce the environmental impact of novel product concepts. Here we develop a novel methodology, the PeeP method, using historical product LCA data with kernel density estimation to provide an estimated environmental impact range for a given product design. The PeeP method is tested using a series of case studies exploring four different products. Results suggest that probability density estimations developed through this method reflect the environmental impact of the product at both the product and component level. In the context of sustainable design research, the PeeP method is a viable methodology for assessing product design environmental impact prior to product realization. Our methodology can allow designers to identify high-impact components and reduce the cost of product redesign in practice. 
    more » « less
  4. Abstract The objective of this study is to investigate students’ decision-making during the information gathering activities of a design process. Existing literature in engineering education has shown that students face difficulties while gathering information in various activities of a design process such as brainstorming and CAD modeling. Decision-making is an important aspect of these activities. While gathering information, students make several decisions such as what information to acquire and how to acquire that information. There lies a research gap in understanding how students make decisions while gathering information in a product design process. To address this gap, we conduct semi-structured interviews and surveys in a product design course. We analyze the students’ decision-making activities from the lens of a sequential information acquisition and decision-making (SIADM) framework. We find that the students recognize the need to acquire information about the physics and dynamics of their design artifact during the CAD modeling activity of the product design process. However, they do not acquire such information from their CAD models primarily due to the lack of the project requirements, their ability, and the time to do so. Instead, they acquire such information from the prototyping activity as their physical prototype does not satisfy their design objectives. However, the students do not get the opportunity to iterate their prototype with the given cost and time constraints. Consequently, they rely on improvising during prototyping. Based on our observations, we discuss the need for designing course project activities such that it facilitates students’ product design decisions. 
    more » « less
  5. Human-designed systems are increasingly leveraged by data-driven methods and artificial intelligence. This leads to an urgent need for responsible design and ethical use. The goal of this conceptual paper is two-fold. First, we will introduce the Framework for Design Reasoning in Data Life-cycle Ethical Management, which integrates three existing frameworks: 1) the design reasoning quadrants framework (representing engineering design research), and 2) the data life-cycle model (representing data management), and 3) the reflexive principles framework (representing ethical decision-making). The integration of three critical components of the framework (design reasoning, data reasoning, and ethical reasoning) is accomplished by centering on the conscientious negotiation of design risks and benefits. Second, we will present an example of a student design project report to demonstrate how this framework guides educators towards delineating and integrating data reasoning, ethical reasoning, and design reasoning in settings where ethical issues (e.g., AI solutions) are commonly experienced. The framework can be implemented to design courses through design review conversations that seamlessly integrate ethical reasoning into the technical and data decision-making processes. 
    more » « less