skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analytic Damping and Stiffness Analysis for a 4-DOF Electrodynamic Wheel Maglev Vehicle
This paper analyzes the damping and stiffness terms of a 4-degree of freedom laboratory scale electrodynamic wheel magnetic levitation vehicle. The vehicle creates both suspension and propulsion forces through the simultaneous rotation and translation of the electrodynamic wheels above a conductive non-magnetic plate of finite thickness. The stiffness and damping terms were derived using an analytic 3-D steady-state eddy current model, and are analyzed based on their suitability for a linear state-space model. The implications with respect to static stability are discussed.  more » « less
Award ID(s):
1810489
PAR ID:
10106667
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2018 XIII International Conference on Electrical Machines (ICEM)
Page Range / eLocation ID:
555 to 561
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper reports on the electromagnetic analysis and experimental testing of a newly invented six-degree of freedom electrodynamic wheel (EDW) magnetic levitation (maglev) vehicle that can stably levitate over a passive low-cost U-guideway. The U-guideway is composed of two sections of L-track aluminum sheet. Both a radial and an axial proof-of-principle EDW maglev vehicle has been built and experimentally tested. The EDW-maglev vehicle contains four one pole-pair diametric magnetized magnets that are driven using a low-cost motor and motor controller. No advanced controls are needed to provide basic stability. A 3-D transient finite element analysis model was used to study the 3-D forces created when the magnets are rotated over the aluminum L-track. The track design study showed that in addition to providing lateral recentering force the L-track can also be used to increases thrust and lift force. 
    more » « less
  2. This paper re-examines the basis for each eddy current stiffness term computed from prior published steady-state eddy current models. The paper corrects prior analysis work by confirming, through the use of 2-D and 3-D dynamic finite element analysis modelling, that when a magnetic source is moving over an infinite-wide and infinite-long conductive sheet guideway the steady-state lateral and translational stiffness terms will be zero and only the vertical coupled stiffness terms need to be modelled. Using these observations, a much simplified 6 degrees-of-freedom (DoF) linearized eddy current dynamic force model can be used to compute the steady-state force changes in eddy current based maglev vehicles when operating over a wide uniform conductive track. 
    more » « less
  3. null (Ed.)
    The coupled differential equation group for the vehicle bridge interaction system is reestablished to include both the vehicle and bridge damping effects. The equation group can be uncoupled and closed-form solutions for both the bridge and vehicle can be obtained under the assumption that the vehicle acceleration magnitude is much lower than the gravitational acceleration constant. Then based on a simply supported boundary condition scenario, several critical parameters including bridge damping, vehicle frequency, vehicle speed, vehicle mass, and vehicle damping are studied to investigate their effects on extracting multiple bridge frequencies from the vehicle. The results show that the bridge damping plays a significant role in the vibration behaviour of both the vehicle and the bridge compared to the vehicle damping. The vehicle is preferred to be designed with a high frequency beyond the interested bridge frequencies to be extracted since low vehicle frequency tends to attenuate bridge frequencies that are higher than the vehicle frequency. A camel hump phenomenon can be observed on the extracted bridge frequencies from the vehicle, especially for scenarios that involve high bridge vibration mode and high vehicle speed. Vehicle speed is preferred to be maintained low to meet the theoretical assumption and to reduce the camel hump phenomenon. Although vehicle mass is not necessarily limited in this study, there is a magnitude balance among vehicle mass, vehicle speed, and damping to meet the theoretical assumption. This theoretical work may give some indications for designing a special field test vehicle to monitor bridge in a more comprehensive way. 
    more » « less
  4. Abstract Component mode mistuning (CMM) is a well-known, well documented reduced order modeling technique that effectively models small variations in blade-to-blade stiffness for bladed disks. In practice, bladed disks always have variations, referred to as mistuning, and are a focus of a large amount of research. One element that is commonly ignored from small mistuning implementations is the variation within the blade-to-blade damping values. This work seeks to better understand the effects of damping mistuning by utilizing both structural and proportional damping formulations. This work builds from previous work that implemented structural damping mistuning reduced order models formulated based on CMM. A similar derivation was used to create reduced order models with a proportional damping formulation. The damping and stiffness mistuning values investigated in this study were derived using measured blade natural frequencies and damping ratios from high-speed rotating experiments on freestanding blades. The two separate damping formulations that are presented give very similar results, enabling the user to select their preferred method for a given application. A key parameter investigated in this work is the significance of blade-to-blade coupling. The blade-to-blade coupling study investigates how the level of coupling impacts damping mistuning effects versus applying average damping to the bladed disk model. Also, the interaction of stiffness and damping mistuning is studied. Monte Carlo simulations were carried out to determine amplification factors, or the ratio of mistuned blade responses to tuned blade responses, for various mistuning levels and patterns. 
    more » « less
  5. Abstract Variable impedance of upper limbs is critical for multifaceted daily activities, adapting to varying physical environments, and facilitating social interactions. Existing soft wearable robots predominantly focus on stiffness modulation, with minimal attention to damping adjustment. In this study, we introduce a novel soft pneumatic actuator integrated with shape memory alloys (SMAs) to achieve significant damping modulation with minimal stiffness variation. By controlling the SMA temperature, the damping of the actuator can be modulated, as demonstrated by experimental evaluations. Under ideal conditions, results showed a maximum damping increase of 140.9% and a maximum decrease of 91.7%, with a maximum stiffness change of only 8%. Phantom arm demonstrations showed up to 76.2% increase in damping ratio, significantly reducing joint oscillation settling times. 
    more » « less