skip to main content

Title: A quadruple-band metal–nitride nanowire artificial photosynthesis system for high efficiency photocatalytic overall solar water splitting
Photocatalytic water splitting is a wireless method for solar-to-hydrogen conversion. To date, however, the efficiency of photocatalytic water splitting is still very low. Here, we have investigated the design, synthesis, and characterization of quadruple-band InGaN nanowire arrays, which consist of In 0.35 Ga 0.65 N, In 0.27 Ga 0.73 N, In 0.20 Ga 0.80 N, and GaN segments, with energy bandgaps of ∼2.1 eV, 2.4 eV, 2.6 eV, and 3.4 eV, respectively. Such multi-band InGaN nanowire arrays are integrated directly on a nonplanar wafer for enhanced light absorption. Moreover, a doping gradient is introduced along the lateral dimension of the nanowires, which forms a built-in electric field and promotes efficient charge carrier separation and extraction for water redox reactions. We have demonstrated that the quadruple-band InGaN nanowire photocatalyst can exhibit a solar-to-hydrogen efficiency of ∼5.2% with relatively stable operation. This work demonstrates a novel strategy using multi-band semiconductor nanostructures for artificial photosynthesis and solar fuel conversion with significantly improved performance.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Materials Horizons
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. CuBiW 2 O 8 (CBTO), with a band gap of 1.9–2.0 eV, responds to a wide region of the electromagnetic spectrum, which makes it a good candidate for solar-driven photocatalytic energy conversion and water treatment. We have previously demonstrated a Cu-rich solid state approach that enables the synthesis of CBTO accompanied by thermodynamically stable Bi 2 WO 6 impurity. Here, we describe an improved synthesis protocol with decreased impurity and synthesis time, and the first demonstration of CBTO as a functional material using photocatalytic Cr( vi ) photoreduction as a probe reaction. Transient absorption spectroscopy (TAS) was performed to investigate the ultrafast dynamics of the charge carriers after photoexcitation. The presence of two populations of photoexcited carriers was found, including short-lived free carriers with ∼10 ps lifetime and long-lived shallowly-trapped carriers with ∼1 ns lifetime. Together with carrier mobilities measured in our previous study, the new TAS results indicate that the long-lived charges have diffusion lengths similar to the CBTO particle size and were likely responsible for the majority of the photocatalytic activity. High activity of CBTO for Cr( vi ) photoreduction (∼100% reduction of 5 mg L −1 of Cr( vi ) in 15 minutes) was demonstrated, which clearly establishes the promise of this novel oxide for visible light-driven photocatalytic applications. Radical quenching experiments indicate that both ˙OH radicals and O 2 ˙ − radicals are produced by CBTO and are involved in the photoreduction of Cr( vi ). Repeated photocatalysis tests and analysis of the surface after the reaction show that CBTO is a stable and potentially reusable catalyst. Insights gained from correlating the synthesis conditions, carrier dynamics, and reactive species suggests that CBTO prepared with the improved protocol would be a favorable choice for photocatalytic reactions such as water decontamination from organic pollutants, water splitting, and solar fuel generation using visible light. 
    more » « less
  2. Photocatalytic reduction of carbon monoxide (CO), an increasingly available and low-cost feedstock that could benefit from CO 2 reduction, to high value-added multi-carbon chemicals, is significant for desirable carbon cycling, as well as high efficiency conversion and high density storage of solar energy. However, developing low cost but highly active photocatalysts with long-term stability for CO coupling and reduction remains a great challenge. Herein, by density functional theory (DFT) computations and taking advantage of the frustrated Lewis pairs (FLPs) concept, we identified a complex consisting of single boron (B) atom decorated on the optically active C 2 N monolayer ( i.e. , B/C 2 N) as an efficient and stable photocatalyst for CO reduction. On the designed B/C 2 N catalyst, CO can be efficiently reduced to ethylene (C 2 H 4 ) and propylene (C 3 H 6 ) both with a free energy increase of 0.22 eV for the potential-determining step, which greatly benefits from the pull–push function of the B–N FLPs composed of the decorating B atom and host N atoms. Moreover, the newly designed B/C 2 N catalyst shows significant visible light absorption with a suitable band position for CO reduction to C 2 H 4 and C 3 H 6 . All these unique features make the B/C 2 N photocatalyst an ideal candidate for visible light driven CO reduction to high value-added multi-carbon fuels and chemicals. 
    more » « less
  3. Metal oxynitrides demonstrate promising activity for photocatalytic solar water splitting and CO2 reduction under solar irradiance aided by noble metals. Precise control of cation ratios in the oxynitrides is a necessary challenge needed to overcome for achieving effective band gap tuning. Here we report density functional theory-based calculations on intricate structure-function relationships of Zn-Ga based oxynitrides and correlate results with the experimental parameters. Crucial material property descriptors such as elemental composition, intrinsic lattice strain, and vacancy defects were exploited during the synthesis to achieve stable oxynitride photocatalysts that demonstrated CO2 conversion to CO under simulated solar spectrum, without any noble metal impregnation. The highest CO production rate surpassed that of TiO2 under the same conditions. This work inspires future research on oxynitride materials towards tailored optical properties and sustainable photocatalytic activity enabling large scale applications. 
    more » « less
  4. Energy harvesting from solar and water has created ripples in materials energy research for the last several decades, complemented by the rise of Hydrogen as a clean fuel. Among these, water electrolysis leading to generation of oxygen and hydrogen, has been one of the most promising routes towards sustainable alternative energy generation and storage, with applications ranging from metal-​air batteries, fuel cells, to solar-​to-​fuel energy conversion systems. In fact, solar water splitting is one of the most promising method to produce Hydrogen without depleting fossil-​fuel based natural resources. However, the efficiency and practical feasibility of water electrolysis is limited by the anodic oxygen evolution reaction (OER)​, which is a kinetically sluggish, electron-​intensive uphill reaction. A slow OER process also slows the other half- cell reaction, i.e. the hydrogen evolution reaction (HER) at the cathode. Hence, designing efficient catalysts for OER process from earth-​abundant resources has been one of the primary concerns for advancing solar water splitting. In the Nath group we have focused on transition metal chalcogenides as efficient OER electrocatalysts. We have proposed the idea that these chalcogenides, specifically, selenides and tellurides will show much better OER catalytic activity due to increasing covalency around the catalytically active transition metal site, compared to the oxides caused by decreasing electronegativity of the anion, which in turn leads to variation of chem. potential around the transition metal center, [e.g. lowering the Ni 2+ -​-​> Ni 3+ oxidn. potential in Ni-​based catalysts where Ni 3+ is the actually catalytically active species]​. Based on such hypothesis, we have synthesized a plethora of transition metal selenides including those based on Ni, Ni-​Fe, Co, and Ni-​Co, which show high catalytic efficiency characterized by low onset potential and overpotential at 10 mA​/cm 2 [Ni 3 Se 2 - 200 - 290 mV; Co 7 Se 8 - 260 mV; FeNi 2 Se 4 -​NrGO - 170 mV (NrGO - N-​doped reduced graphene oxide)​; NiFe 2 Se 4 - 210 mV; CoNi 2 Se 4 - 190 mV; Ni 3 Te 2 - 180 mV]​. 
    more » « less
  5. Abstract

    Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm−2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, withVocof 1.80 V,Jscof 11.07 mA cm−2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved highVocin the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively.

    more » « less