ABSTRACT This study focuses on investigating the conformational structure and zinc(II) affinity of a zinc finger‐like motif (ZFM) peptide with the sequence acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐His6‐Cys7, where bold highlights the potential zinc(II) binding sites. Zinc fingers are crucial protein motifs known for their high specificity and affinity for zinc ions. The ZFM peptide's sequence contains the 2His‐2Cys zinc‐binding sites similar to those in natural zinc finger proteins but without the hydrophobic core, making it a valuable model for studying zinc(II)–peptide interactions. Previous research on related peptides showed that collision cross sections and B3LYP modeling predicted that the His‐2Cys‐carboxyl terminus coordination of zinc(II) was more stable than the 2His‐2Cys. Employing a comprehensive approach integrating ion mobility–mass spectrometry and theoretical modeling techniques, various zinc(II) binding modes of the ZFM have been thoroughly compared to ascertain their influence on the competitive threshold collision‐induced dissociation method for measuring the relative gas‐phase Zn(II) affinity of the ZFM peptide. The measured Zn(II) affinity of ZFM is greater than those measured recently for two peptides with similar primary structures, acetyl‐His1‐Cys2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7and acetyl‐Asp1‐His2‐Gly3‐Pro4‐Gly5‐Gly6‐Cys7, indicating the preference for the His1‐Cys2‐His6‐Cys7side groups for coordinating zinc(II) over the His‐2Cys‐carboxyl terminus or Asp‐His‐Cys‐carboxyl terminus in these related heptapeptides.
more »
« less
Emerging investigator series: characterization of silver and silver nanoparticle interactions with zinc finger peptides
In biological systems, chemical and physical transformations of engineered silver nanomaterials (AgENMs) are mediated, in part, by proteins and other biomolecules. Metalloprotein interactions with AgENMs are also central in understanding toxicity, antimicrobial, and resistance mechanisms. Despite their readily available thiolate and amine ligands, zinc finger (ZF) peptides have thus far escaped study in reaction with AgENMs and their Ag( i ) oxidative dissolution product. We report spectroscopic studies that characterize AgENM and Ag( i ) interactions with two ZF peptides that differ in sequence, but not in metal binding ligands: the ZF consensus peptide CP-CCHC and the C-terminal zinc finger domain of HIV-1 nucleocapsid protein p7 (NCp7_C). Both ZF peptides catalyze AgENM (10 and 40 nm, citrate coated) dissolution and agglomeration, two important AgENM transformations that impact bioreactivity. AgENMs and their oxidative dissolution product, Ag( i )(aq), mediate changes to ZF peptide structure and metalation as well. Spectroscopic titrations of Ag( i ) into apo-ZF peptides show an Ag( i )–thiolate charge transfer band, indicative of Ag( i )–ZF binding. Fluorescence studies of the Zn( ii )–NCp_7 complex indicate that the Ag( i ) also effectively competes with the Zn( ii ) to drive Zn( ii ) displacement from the ZFs. Upon interaction with AgENMs, Zn( ii ) bound ZF peptides show a secondary structural change in circular dichroism spectroscopy toward an apo-like structure. The results suggest that Ag( i ) and AgENMs may alter ZF protein function within the cell.
more »
« less
- PAR ID:
- 10107347
- Date Published:
- Journal Name:
- Environmental Science: Nano
- ISSN:
- 2051-8153
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In this study, we investigate the influence of the Tyr5 and His6 substituent groups on the zinc-binding affinities and conformational properties of a series of acetylated heptapeptides, acetyl-His1-Cys2-Gly3-Pro4-X5-X6-Cys7 focusing on the impacts where X5-X6 are either Tyr5-Gly6, Tyr5-His6, Gly5-Gly6, or Gly5-His6. Utilizing traveling-wave ion mobility-mass spectrometry and molecular modeling techniques we analyze the zinc binding interactions and peptide coordination behavior. The zinc binding peptides (ZBPs) relative zinc affinities were measured across pH 5 to pH 10 by monitoring the solution-phase formation of the [ZBP+Zn(II)] complex by utilizing native MS in negative ion mode to preserve the solution-phase binding of Zn(II) to the peptides. Furthermore, their relative gas-phase Zn(II) affinities were measured using competitive threshold collision-induced dissociation (TCID) of the [ZBP+Zn(II)+NTA] complex, by modeling the two competing dissociation channels: [ZBP+Zn(II)]- + NTA or [Zn(II)+NTA] + ZBP, where NTA is nitrilotriacetic acid. Our examinations also tested whether there was an effect of the formation of the [ZBP+Zn(II)+NTA] complexes from solutions at different pHs, before they are electrosprayed into the gas-phase for the TCID analyses. Both solution- and gas-phase measurements predicted the heptapeptide with the Gly5-His6 residues had the greatest zinc affinity and that the presence of Tyr5 and His6 altered the zinc affinity and induced distinct conformational changes due to changes in the coordination of the zinc. This research enhances our understanding of zinc-peptide interactions, with implications for the design of peptide-based metalloproteins, which may guide the design of novel ZBPs for therapeutic, biotechnological or environmental remediation applications.more » « less
-
Zinc finger (ZF) proteins are proteins that use zinc as a structural cofactor. The common feature among all ZFs is that they contain repeats of four cysteine and/or histidine residues within their primary amino acid sequence. With the explosion of genome sequencing in the early 2000s, a large number of proteins were annotated as ZFs based solely upon amino acid sequence. As these proteins began to be characterizedexperimentally, it was discovered that some of these proteins contain iron–sulfur sites either in place of or in addition to zinc. Here, we describe methods to isolate and characterize one such ZF protein, cleavage and polyadenylation specificity factor 30 (CPSF3O) with respect to its metal-loading and RNA-binding activity.more » « less
-
Abstract SH2B1 is a multidomain protein that serves as a key adaptor to regulate numerous cellular events, such as insulin, leptin, and growth hormone signaling pathways. Many of these protein‐protein interactions are mediated by the SH2 domain of SH2B1, which recognizes ligands containing a phosphorylated tyrosine (pY), including peptides derived from janus kinase 2, insulin receptor, and insulin receptor substrate‐1 and −2. Specificity for the SH2 domain of SH2B1 is conferred in these ligands either by a hydrophobic or an acidic side chain at the +3 position C‐terminal to the pY. This specificity for chemically disparate species suggests that SH2B1 relies on distinct thermodynamic or structural mechanisms to bind to peptides. Using binding and structural strategies, we have identified unique thermodynamic signatures for each peptide binding mode, and several SH2B1 residues, including K575 and R578, that play distinct roles in peptide binding. The high‐resolution structure of the SH2 domain of SH2B1 further reveals conformationally plastic protein loops that may contribute to the ability of the protein to recognize dissimilar ligands. Together, numerous hydrophobic and electrostatic interactions, in addition to backbone conformational flexibility, permit the recognition of diverse peptides by SH2B1. An understanding of this expanded peptide recognition will allow for the identification of novel physiologically relevant SH2B1/peptide interactions, which can contribute to the design of obesity and diabetes pharmaceuticals to target the ligand‐binding interface of SH2B1 with high specificity.more » « less
-
Aqueous zinc-ion batteries (AZIBs) are promising candidates for large-scale electrical energy storage due to the inexpensive, safe, and non-toxic nature of zinc. One key area that requires further development is electrode materials that store Zn 2+ ions with high reversibility and fast kinetics. To determine the viability of low-cost organosulfur compounds as OEMs for AZIBs, we investigate how structural modification affects electrochemical performance in Zn-thiolate complexes 1 and 2. Remarkably, modification of one thiolate in 1 to sulfide in 2 reduces the voltage hysteresis from 1.04 V to 0.15 V. While 1 exhibits negligible specific capacity due to the formation of insulating DMcT polymers, 2 delivers a capacity of 107 mA h g −1 with a primary discharge plateau at 1.1 V vs. Zn 2+ /Zn. Spectroscopic studies of 2 suggest a Zn 2+ and H + co-insertion mechanism with Zn 2+ as the predominant charge carrier. Capacity fading in Zn-2 cells likely results from the formation of (i) soluble H + insertion products and (ii) non-redox-active side products. Increasing electrolyte concentration and using a Nafion membrane significantly enhances the stability of 2 by suppressing H + insertion. Our findings provide insight into the molecular design strategies to reduce the polarization potential and improve the cycling stability of the thiolate/disulfide redox couple in aqueous battery systems.more » « less
An official website of the United States government

