skip to main content


Title: The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models

Abstract. Satellite cloud observations have become an indispensable tool for evaluatinggeneral circulation models (GCMs). To facilitate the satellite and GCMcomparisons, the CFMIP (Cloud Feedback Model Inter-comparison Project)Observation Simulator Package (COSP) has been developed and is nowincreasingly used in GCM evaluations. Real-world clouds and precipitation canhave significant sub-grid variations, which, however, are often ignored oroversimplified in the COSP simulation. In this study, we use COSP cloudsimulations from the Super-Parameterized Community Atmosphere Model (SPCAM5)and satellite observations from the Moderate Resolution ImagingSpectroradiometer (MODIS) and CloudSat to demonstrate the importance ofconsidering the sub-grid variability of cloud and precipitation when usingthe COSP to evaluate GCM simulations. We carry out two sensitivity tests:SPCAM5 COSP and SPCAM5-Homogeneous COSP. In the SPCAM5 COSP run, the sub-gridcloud and precipitation properties from the embeddedcloud-resolving model (CRM) of SPCAM5 are used to drive the COSP simulation, while inthe SPCAM5-Homogeneous COSP run only grid-mean cloud and precipitationproperties (i.e., no sub-grid variations) are given to the COSP. We find thatthe warm rain signatures in the SPCAM5 COSP run agree with the MODIS andCloudSat observations quite well. In contrast, the SPCAM5-Homogeneous COSPrun which ignores the sub-grid cloud variations substantially overestimatesthe radar reflectivity and probability of precipitation compared to thesatellite observations, as well as the results from the SPCAM5 COSP run. Thesignificant differences between the two COSP runs demonstrate that it isimportant to take into account the sub-grid variations of cloud andprecipitation when using COSP to evaluate the GCM to avoid confusing andmisleading results.

 
more » « less
Award ID(s):
1726023
NSF-PAR ID:
10107569
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
11
Issue:
8
ISSN:
1991-9603
Page Range / eLocation ID:
3147 to 3158
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. One of the challenges inrepresenting warm rain processes in global climate models (GCMs) is relatedto the representation of the subgrid variability of cloud properties, such ascloud water and cloud droplet number concentration (CDNC), and the effectthereof on individual precipitation processes such as autoconversion. Thiseffect is conventionally treated by multiplying the resolved-scale warm rainprocess rates by an enhancement factor (Eq) which is derived fromintegrating over an assumed subgrid cloud water distribution. The assumedsubgrid cloud distribution remains highly uncertain. In this study, we derivethe subgrid variations of liquid-phase cloud properties over the tropicalocean using the satellite remote sensing products from Moderate ResolutionImaging Spectroradiometer (MODIS) and investigate the correspondingenhancement factors for the GCM parameterization of autoconversion rate. Wefind that the conventional approach of using only subgrid variability ofcloud water is insufficient and that the subgrid variability of CDNC, as wellas the correlation between the two, is also important for correctlysimulating the autoconversion process in GCMs. Using the MODIS data whichhave near-global data coverage, we find that Eq shows a strongdependence on cloud regimes due to the fact that the subgrid variability ofcloud water and CDNC is regime dependent. Our analysis shows a significantincrease of Eq from the stratocumulus (Sc) to cumulus (Cu) regions.Furthermore, the enhancement factor EN due to the subgrid variation ofCDNC is derived from satellite observation for the first time, and resultsreveal several regions downwind of biomass burning aerosols (e.g., Gulf ofGuinea, east coast of South Africa), air pollution (i.e., East China Sea),and active volcanos (e.g., Kilauea, Hawaii, and Ambae, Vanuatu), where theEN is comparable to or even larger than Eq, suggesting an importantrole of aerosol in influencing the EN. MODIS observations suggest thatthe subgrid variations of cloud liquid water path (LWP) and CDNC aregenerally positively correlated. As a result, the combined enhancementfactor, including the effect of LWP and CDNC correlation, is significantlysmaller than the simple product of EqEN. Given the importanceof warm rain processes in understanding the Earth's system dynamics and watercycle, we conclude that more observational studies are needed to provide abetter constraint on the warm rain processes in GCMs.

     
    more » « less
  2. Abstract The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR) over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro- and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional means ∼20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical properties for future climate model development and climate projection. 
    more » « less
  3. Abstract This study examines the free-tropospheric quasi-equilibrium at different global climate model (GCM) resolutions using the simulation of tropical convection by a cloud-resolving model during the Tropical Western Pacific International Cloud Experiment. The simulated dynamic and thermodynamic fields within the model domain are averaged over subdomains of different sizes equivalent to different GCM resolutions. These coarse-grained fields are then used to compute CAPE and its change with time, and their relationships with simulated convection. Results show that CAPE change with time is controlled predominantly by variations of thermodynamic properties in the planetary boundary layer for all subdomain sizes ranging from 64 to 4 km. Lag correlation analysis shows that CAPE generation by the free-tropospheric dynamical advection (dCAPE ls ) leads convective precipitation but is in phase with convective mass flux at 600 mb and 500 mb vertical velocity for all subdomain sizes. However, the correlation coefficients and regression slopes decrease as the subdomain size decreases for subdomain sizes smaller than 16 km. This is probably due to increased randomness of convection and more scale-dependence of the relationships when the subdomain size reaches the grey zone. By examining the sensitivity of the relationships of convection with dCAPE ls to temporal scales in different subdomain size, it shows that the quasi-equilibrium between dCAPE ls and convection holds well for timescales of 30 min or longer at all subdomain sizes. These results suggest that the free tropospheric quasi-equilibrium assumption may still be useable even for GCM resolutions in the grey zone. 
    more » « less
  4. null (Ed.)
    Abstract The goal of this study is to challenge a large eddy simulation model with a range of observations from a modern field campaign and to develop case studies useful to other modelers. The 2015 Cloud System Evolution in the Trades (CSET) field campaign provided a wealth of in situ and remote sensing observations of subtropical cloud transitions in the summertime Northeast Pacific. Two Lagrangian case studies based on these observations are used to validate the thermodynamic, radiative and microphysical properties of large eddy simulations (LES) of the stratocumulus to cumulus transition. The two cases contrast a relatively fast cloud transition in a clean, initially well-mixed boundary layer vs. a slower transition in an initially decoupled boundary layer with higher aerosol concentrations and stronger mean subsidence. For each case, simulations of two neighboring trajectories sample mesoscale variability and the coherence of the transition in adjacent air masses. In both cases, LES broadly reproduce satellite and aircraft observations of the transition. Simulations of the first case match observations more closely than for the second case, where simulations underestimate cloud cover early in the simulations and overestimate cloud top height later. For the first case, simulated cloud fraction and liquid water path increase if a larger cloud droplet number concentration is prescribed. In the second case, precipitation onset and inversion cloud breakup occurs earlier when the LES domain is chosen large enough to support strong mesoscale organization. 
    more » « less
  5. Abstract. Many passive remote-sensing techniques have beendeveloped to retrieve cloud microphysical properties from satellite-basedsensors, with the most common approaches being the bispectral andpolarimetric techniques. These two vastly different retrieval techniqueshave been implemented for a variety of polar-orbiting and geostationarysatellite platforms, providing global climatological data sets. Priorinstrument comparison studies have shown that there are systematicdifferences between the droplet size retrieval products (effective radius)of bispectral (e.g., MODIS, Moderate Resolution Imaging Spectroradiometer)and polarimetric (e.g., POLDER, Polarization and Directionality of Earth'sReflectances) instruments. However, intercomparisons of airborne bispectraland polarimetric instruments have yielded results that do not appear to besystematically biased relative to one another. Diagnosing this discrepancyis complicated, because it is often difficult for instrument intercomparisonstudies to isolate differences between retrieval technique sensitivities andspecific instrumental differences such as calibration and atmosphericcorrection. In addition to these technical differences the polarimetricretrieval is also sensitive to the dispersion of the droplet sizedistribution (effective variance), which could influence the interpretationof the droplet size retrieval. To avoid these instrument-dependentcomplications, this study makes use of a cloud remote-sensing retrievalsimulator. Created by coupling a large-eddy simulation (LES) cloud modelwith a 1-D radiative transfer model, the simulator serves as a test bed forunderstanding differences between bispectral and polarimetric retrievals.With the help of this simulator we can not only compare the two techniquesto one another (retrieval intercomparison) but also validate retrievalsdirectly against the LES cloud properties. Using the satellite retrievalsimulator, we are able to verify that at high spatial resolution (50m) thebispectral and polarimetric retrievals are highly correlated with oneanother within expected observational uncertainties. The relatively smallsystematic biases at high spatial resolution can be attributed to differentsensitivity limitations of the two retrievals. In contrast, a systematicdifference between the two retrievals emerges at coarser resolution. Thisbias largely stems from differences related to sensitivity of the tworetrievals to unresolved inhomogeneities in effective variance and opticalthickness. The influence of coarse angular resolution is found to increaseuncertainty in the polarimetric retrieval but generally maintains aconstant mean value.

     
    more » « less