skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low-loss fiber-to-chip interface for lithium niobate photonic integrated circuits
Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly >10  dB/facet) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers.  more » « less
Award ID(s):
1827720
PAR ID:
10107614
Author(s) / Creator(s):
Date Published:
Journal Name:
Optics letters
Volume:
44
Issue:
9
ISSN:
1539-4794
Page Range / eLocation ID:
2314-2317
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated lithium niobate (LN) photonic circuits have recently emerged as a promising candidate for advanced photonic functions such as high-speed modulation, nonlinear frequency conversion, and frequency comb generation. For practical applications, optical interfaces that feature low fiber-to-chip coupling losses are essential. So far, the fiber-to-chip loss (commonly > 10    dB / facet ) has dominated the total insertion losses of typical LN photonic integrated circuits, where on-chip losses can be as low as 0.03–0.1 dB/cm. Here we experimentally demonstrate a low-loss mode size converter for coupling between a standard lensed fiber and sub-micrometer LN rib waveguides. The coupler consists of two inverse tapers that convert the small optical mode of a rib waveguide into a symmetrically guided mode of a LN nanowire, featuring a larger mode area matched to that of a tapered optical fiber. The measured fiber-to-chip coupling loss is lower than 1.7 dB/facet with high fabrication tolerance and repeatability. Our results open the door for practical integrated LN photonic circuits efficiently interfaced with optical fibers. 
    more » « less
  2. Robust, low-loss photonic packaging of on-chip nanophotonic circuits is a key enabling technology for the deployment of integrated photonics in a variety of classical and quantum technologies including optical communications and quantum communications, sensing, and transduction. To date, no process has been established that enables permanent, broadband, and cryogenically compatible coupling with sub-dB losses from optical fibers to nanophotonic circuits. Here, we report a technique for reproducibly generating a permanently packaged interface between a tapered optical fiber and nanophotonic devices on diamond with a record-low coupling loss <1 dB per facet at near-infrared wavelengths (∼730 nm) that remains stable from 300 K to 30 mK. We further demonstrate the compatibility of this technique with etched lithium niobate on insulator waveguides. The technique lifts performance limitations imposed by scattering as light transfers between photonic devices and optical fibers, paving the way for scalable integration of photonic technologies at both room and cryogenic temperatures. 
    more » « less
  3. With the ever-increasing need for higher data rates, datacom and telecom industries are now migrating to silicon photonics to achieve higher data rates with reduced manufacturing costs. However, the optical packaging of integrated photonic devices with multiple I/O ports remains a slow and expensive process. We introduce an optical packaging technique to attach fiber arrays to a photonic chip in a single shot using CO2laser fusion splicing. We show a minimum coupling loss of 1.1 dB, 1.5 dB, and 1.4 dB per-facet for 2, 4, and 8-fiber arrays (respectively) fused to the oxide mode converters using a single shot from the CO2laser. 
    more » « less
  4. Integrated nonlinear photonic circuits received rapid development in recent years, providing all-optical functionalities enabled by cavity-enhanced photon-photon interaction for classical and quantum applications. A high-efficiency fiber-to-chip interface is key to these integrated photonic circuits for quantum information tasks, as photon-loss is a major source that weakens quantum protocols. Here, overcoming material and fabrication limitation of thin-film aluminum nitride by adopting a stepwise waveguiding scheme, we demonstrate low-loss adiabatic fiber-optic couplers in aluminum nitride films with a substantial thickness (∼600 nm) for optimized nonlinear photon interaction. For telecom (1550 nm) and near-visible (780 nm) transverse magnetic-polarized light, the measured insertion loss of the fiber-optic coupler is -0.97 dB and -2.6 dB, respectively. Our results will facilitate the use of aluminum nitride integrated photonic circuits as efficient quantum resources for generation of entangled photons and squeezed light on microchips. 
    more » « less
  5. We report on monolithically integrated wavelength cross-connects (WXCs) on an enhanced silicon photonic platform with integrated micro-electro-mechanical-system (MEMS) actuators. An 8 × 8 WXC with 8 wavelength channels comprising 16 echelle gratings and 512 silicon photonic MEMS switches is integrated on a 9.7 mm × 6.7 mm silicon chip. The WXC inherits the fundamental advantages of silicon photonic MEMS space switches, including low loss, broad optical bandwidth, large fabrication tolerance, and simple digital control. The WXC exhibits a low crosstalk of −30 dB, a submicrosecond switching time of 0.7 µs, and on-chip optical insertion losses varying from 8.8 dB to 16.4 dB. To our knowledge, it is the largest channel capacity (64 channels = 8 ports × 8 wavelengths) integrated WXC ever reported. 
    more » « less