skip to main content

Title: Innovations in Additive Manufacturing Workforce Development
With the nonstop advancements in Additive Manufacturing (AM), the American workforce needs technical training in several aspects of this leading-edge technology in its utilization and adaptability. The objective of the Additive Manufacturing Workforce Advancement Training Coalition and Hub (AM-WATCH) is to address current gaps in the knowledge base of 21st century professionals through the development of AM-WATCH educational materials tied to ABET Student Outcomes, delivery of professional development activities, and expanded outreach activities targeting K-12 and community college teachers and students. The project significantly enhances and expands the current resources developed by prior National Science Foundation projects (remote AM facilities, AM learning curriculum and educator workshops) to encompass hands-on desktop 3D printer-building modules, AM equipment operation/maintenance guidelines and additional remotely-accessible AM equipment laboratories. The project establishes a number of cutting edge AM innovations and targets to engage students in STEM and other technical careers while teaching them the latest AM trends and technologies. In short, this project brings many unique innovations to AM practices in teaching, learning, and training.
Award ID(s):
Publication Date:
Journal Name:
2018 Rapid +TCT Conference
Sponsoring Org:
National Science Foundation
More Like this
  1. The Additive Manufacturing Workforce Advancement Training Coalition and Hub (AM-WATCH) targets to address gaps in the current knowledge base of manufacturing professionals through the development of Massive Open Online Courses (MOOCs) based educational materials, delivery of professional development activities, support provided to 30+ instructors per year, and expanded outreach activities targeting K-12 and community college teachers and students. Tennessee Tech University is collaborating with the University of Louisville, Sinclair Community College, National Resource Center for Materials Technology Education, Oak Ridge National Laboratory, and industry in the development of cutting-edge and multi-dimensional educational modules and activities for instructors. Developed materials are presented to 30+ instructors through intensive two-day AM Studios every year. While instructors learn the latest trends and technologies in AM, they also grasp the ABET Student Outcomes and Continuous Improvement. This paper reports the current practices made in these studios and feedback received from the instructors.
  2. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduatesmore »with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field.« less
  3. The emerging convergence research emphasizes integrating knowledge, methods, and expertise from different disciplines and forming novel frameworks to catalyze scientific discovery and innovation, not only multidisciplinary, but interdisciplinary and further transdisciplinary. Mechatronics matches this new trend of convergence engineering research for deep integration across disciplines such as mechanics, electronics, control theory, robotics, and production manufacturing, and is also inspired by its active means of addressing a specific challenge or opportunity for societal needs. The most current applications of mechatronics in automotive are e-mobility (electric vehicles, EV) and connected and autonomous vehicles (CAV); in manufacturing are robotics and smart-factory; and in aerospace are drones, unmanned aerial vehicle (UAV), and advanced avionics. The growing mechatronics industries demand high quality workforces with multidiscipline knowledge and training. These workforces can come from the graduates of colleges and universities with updated curricula, or from labors returning to schools or taking new training programs. Graduate schools can prepare higher level workforces that can carry out fundamental research and explore new technologies in mechatronics. K-12 schools will also play an important role in fostering the next-decade workforces for all the STEM area. On the other hand, the development of mechatronics technologies improves the tools for teaching mechatronicsmore »as well. These new teaching tools include affordable microcontrollers and the peripherals such as Arduinos, and Raspberry Pi, desktop 3D printers, and virtual reality (VR). In this paper we present the working processes and activities of a current one-year ECR project funded by NSF organizing two workshops held by two institutes for improving workforce development environments specified in mechatronics. Each workshop is planned to be two days, where the first day will be dedicated to the topics of the current workforce situation in industry, the current pathways for workforces, conventional college and university workforce training, and K-12 STEM education preparation in mechatronics. The topics in the second day will be slightly different based on the expertise and locations of the two institutes. One will focus on the mechatronics technologies in production engineering for alternative energy and ground mobility, and the other will concentrate on aerospace, alternative energy, and the corresponding applications. Both workshops will also address the current technical development of teaching methods and tools for mechatronics. VR will be specially emphasized and demonstrated in the workshops if the facilities allow. Social impacts of mechatronics technology, expansion of diversity and participation of underrepresented groups will be discussed in the workshops. We expect to have the results of the workshops to present in the annual ASEE conference in June.« less
  4. There is significant and growing interest in manufacturing; this is particularly true with respect to advanced manufacturing. Advanced manufacturing typically refers to the use of new technologies to make products that have high value or significant value added through the production process. One of the main impediments advanced manufacturing companies cite is the lack of a skilled workforce. This is the result of both a lack of technical skills, but also due to outdated and incorrect perceptions about manufacturing. Manufacturing is incorrectly perceived as low-skilled, dirty, and low paying. The reality is that a significant portion of manufacturing jobs require advanced technological knowledge and are done in state of the art facilities. One of the more effective ways to increase knowledge about science, technology, engineering, and math (STEM) careers is to increase the knowledge of teachers. As part of a National Science Foundation Advanced Technological Education project, a group of high school teachers was offered the opportunity to work in advanced manufacturing labs with engineering faculty. These projects included additive manufacturing (AM) of ceramics, surface characterization of AM metal parts, and surface alteration. The teachers were tasked with developing lesson plans which incorporated the advanced manufacturing concepts that they hadmore »learned. As part of the assessment of the program, teachers were given pre- and post- research experience surveys regarding their perceptions of manufacturing and their views of STEM topics in general; the later data were collected using the validated T-STEM instrument. External evaluation also provided feedback on the usefulness of various program activities. Overall participants found their laboratory research and research facility tours extremely useful. They felt that the program enhanced their excitement about STEM and their laboratory skills. Participants also showed significant increases in their post program technology teaching efficacy, student technology use, and STEM career awareness. In addition to empirical results, project descriptions and program details are also be presented.« less
  5. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM ofmore »polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally.« less