We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results.
more »
« less
Reinforcement Learning for Dynamic Dimensioning of Cloud Caches: A Restless Bandit Approach
We study the dynamic cache dimensioning problem, where the objective is to decide how much storage to place in the cache to minimize the total costs with respect to the storage and content delivery latency. We formulate this problem as a Markov decision process, which turns out to be a restless multi-armed bandit problem and is provably hard to solve. For given dimensioning decisions, it is possible to develop solutions based on the celebrated Whittle index policy. However, Whittle index policy has not been studied for dynamic cache dimensioning, mainly because cache dimensioning needs to be repeatedly solved and jointly optimized with content caching. To overcome this difficulty, we propose a low-complexity fluid Whittle index policy, which jointly determines dimensioning and content caching. We show that this policy is asymptotically optimal. We further develop a lightweight reinforcement learning augmented algorithm dubbed fW-UCB when the content request and delivery rates are unavailable. fW-UCB is shown to achieve a sub-linear regret as it fully exploits the structure of the near-optimal fluid Whittle index policy and hence can be easily implemented. Extensive simulations using real traces support our theoretical results.
more »
« less
- Award ID(s):
- 2104880
- PAR ID:
- 10320259
- Date Published:
- Journal Name:
- IEEE International Conference on Computer Communications (IEEE INFOCOM)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study adaptive video streaming for multiple users in wireless access edge networks with unreliable channels. The key challenge is to jointly optimize the video bitrate adaptation and resource allocation such that the users' cumulative quality of experience is maximized. This problem is a finite-horizon restless multi-armed multi-action bandit problem and is provably hard to solve. To overcome this challenge, we propose a computationally appealing index policy entitled Quality Index Policy, which is well-defined without the Whittle indexability condition and is provably asymptotically optimal without the global attractor condition. These two conditions are widely needed in the design of most existing index policies, which are difficult to establish in general. Since the wireless access edge network environment is highly dynamic with system parameters unknown and time-varying, we further develop an index-aware reinforcement learning (RL) algorithm dubbed QA-UCB. We show that QA-UCB achieves a sub-linear regret with a low-complexity since it fully exploits the structure of the Quality Index Policy for making decisions. Extensive simulations using real-world traces demonstrate significant gains of proposed policies over conventional approaches. We note that the proposed framework for designing index policy and index-aware RL algorithm is of independent interest and could be useful for other large-scale multi-user problems.more » « less
-
Network cache allocation and management are important aspects of an Information-Centric Network (ICN) design, such as one based on Named Data Networking (NDN). We address the problem of optimal cache size allocation and content placement in an ICN in order to maximize the caching gain resulting from routing cost savings. While prior art assumes a given cache size at each network node and focuses on content placement, we study the problem when a global, network-wide cache storage budget is given and we solve for the optimal per-node cache allocation. This problem arises in cloud-based network settings where each network node is virtualized and housed within a cloud data center node with associated dynamic storage resources acquired from the cloud node as needed. As the offline centralized version of the optimal cache allocation problem is NP-hard, we develop a distributed adaptive algorithm that provides an approximate solution within a constant factor from the optimal. Performance evaluation of the algorithm is carried out through extensive simulations over multiple network topologies, demonstrating that our proposal significantly outperforms existing cache allocation algorithms.more » « less
-
Content delivery networks (CDNs) distribute much of today's Internet traffic by caching and serving users' contents requested. A major goal of a CDN is to improve hit probabilities of its caches, thereby reducing WAN traffic and user-perceived latency. In this paper, we develop a new approach for caching in CDNs that learns from optimal caching for decision making. To attain this goal, we first propose HRO to compute the upper bound on optimal caching in an online manner, and then leverage HRO to inform future content admission and eviction. We call this new cache design LHR. We show that LHR is efficient since it includes a detection mechanism for model update, an auto-tuned threshold-based model for content admission with a simple eviction rule. We have implemented an LHR simulator as well as a prototype within an Apache Traffic Server and the Caffeine, respectively. Our experimental results using four production CDN traces show that LHR consistently outperforms state of the arts with an increase in hit probability of up to 9% and a reduction in WAN traffic of up to 15% compared to a typical production CDN cache. Our evaluation of the LHR prototype shows that it only imposes a moderate overhead and can be deployed on today's CDN servers.more » « less
-
In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable.more » « less