skip to main content


Title: ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti
ABSTRACT Active M dwarfs are known to produce bursty radio emission, and multiwavelength studies have shown that solar-like magnetic activity occurs in these stars. However, coherent bursts from active M dwarfs have often been difficult to interpret in the solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a time-scale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity at least 7 orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M dwarfs, suggesting that these stars mark the beginning of the transition from solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems.  more » « less
Award ID(s):
1816492
NSF-PAR ID:
10108095
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
488
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
559 to 571
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Observing magnetic star–planet interactions (SPIs) offers promise for determining the magnetic fields of exoplanets. Models of sub-Alfvénic SPIs predict that terrestrial planets in close-in orbits around M dwarfs can induce detectable stellar radio emission, manifesting as bursts of strongly polarized coherent radiation observable at specific planet orbital positions. Here we present 2–4 GHz detections of coherent radio bursts on the slowly rotating M dwarf YZ Ceti, which hosts a compact system of terrestrial planets, the innermost of which orbits with a two-day period. Two coherent bursts occur at similar orbital phases of YZ Ceti b, suggestive of an enhanced probability of bursts near that orbital phase. We model the system’s magnetospheric environment in the context of sub-Alfvénic SPIs and determine that YZ Ceti b can plausibly power the observed flux densities of the radio detections. However, we cannot rule out stellar magnetic activity without a well-characterized rate of non-planet-induced coherent radio bursts on slow rotators. YZ Ceti is therefore a candidate radio SPI system, with unique promise as a target for long-term monitoring.

     
    more » « less
  2. null (Ed.)
    ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys. 
    more » « less
  3. ABSTRACT

    The population of radio-loud stars has to date been studied primarily through either targeted observations of a small number of highly active stars or wide-field, single-epoch surveys that cannot easily distinguish stellar emission from background extragalactic sources. As a result it has been difficult to constrain population statistics such as the surface density and fraction of the population producing radio emission in a particular variable or spectral class. In this paper, we present a sample of 36 radio stars detected in a circular polarization search of the multi-epoch Variables and Slow Transients (VAST) pilot survey with ASKAP at 887.5 MHz. Through repeat sampling of the VAST pilot survey footprint we find an upper limit to the duty cycle of M-dwarf radio bursts of $8.5 \,\rm {per\,cent}$, and that at least 10 ± 3 $\rm {per\,cent}$ of the population should produce radio bursts more luminous than $10^{15} \,\rm {erg}\mathrm{s}^{-1} \,\mathrm{Hz}^{-1}$. We infer a lower limit on the long-term surface density of such bursts in a shallow $1.25 \,\mathrm{m}\rm {Jy}\rm\ {PSF}^{-1}$ sensitivity survey of ${9}^{\, +{11}}_{-{7}}\times 10^{-3}$  $\,\deg ^{-2}$ and an instantaneous radio star surface density of 1.7 ± 0.2 × 10−3  $\,\deg ^{-2}$ on 12 min time-scales. Based on these rates we anticipate ∼200 ± 50 new radio star detections per year over the full VAST survey and ${41\, 000}^{\, +{10\, 000}}_{-{9\, 000}}$ in next-generation all-sky surveys with the Square Kilometre Array.

     
    more » « less
  4. ABSTRACT

    Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.

     
    more » « less
  5. Abstract

    We present a study of the variation timescales of the chromospheric activity indicator Hαon a sample of 13 fully convective, active mid-to-late M stars with masses between 0.1 and 0.3 solar masses. Our goal was to determine the dominant variability timescale and, by inference, a possible mechanism responsible for the variation. We gathered 10 or more high-resolution spectra each of 10 stars using the TRES spectrograph at times chosen to span all phases of stellar rotation, as determined from photometric data from the MEarth Observatories. All stars varied in their Hαemission. For nine of these stars, we found no correlation between Hαand rotational phase, indicating that constant emission from fixed magnetic structures, such as star spots and plage, are unlikely to be the dominant source of Hαemission variability. In contrast, one star, G 7–34, shows a clear relationship between Hαand stellar rotational phase. Intriguingly, we found that this star is a member of the AB Doradus moving group and hence has the young age of 149 Myr. High-cadence spectroscopic observations of three additional stars revealed that they are variable on timescales ranging from 20 to 45 minutes, which we posit may be due to flaring behavior. For one star, GJ 1111, simultaneous TESS photometry and spectroscopic monitoring show an increase in Hαemission with increased photometric brightness. We conclude that low-energy flares are able to produce variation in Hαon the timescales we observe and thus may be the dominant source of Hαvariability on active fully convective M dwarfs.

     
    more » « less