skip to main content

Title: ASKAP detection of periodic and elliptically polarized radio pulses from UV Ceti
ABSTRACT Active M dwarfs are known to produce bursty radio emission, and multiwavelength studies have shown that solar-like magnetic activity occurs in these stars. However, coherent bursts from active M dwarfs have often been difficult to interpret in the solar activity paradigm. We present Australian Square Array Pathfinder (ASKAP) observations of UV Ceti at a central frequency of 888 MHz. We detect several periodic, coherent pulses occurring over a time-scale consistent with the rotational period of UV Ceti. The properties of the pulsed emission show that they originate from the electron cyclotron maser instability, in a cavity at least 7 orders of magnitude less dense than the mean coronal density at the estimated source altitude. These results confirm that auroral activity can occur in active M dwarfs, suggesting that these stars mark the beginning of the transition from solar-like to auroral magnetospheric behaviour. These results demonstrate the capabilities of ASKAP for detecting polarized, coherent bursts from active stars and other systems.
; ; ; ; ; ; ; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
559 to 571
Sponsoring Org:
National Science Foundation
More Like this

    Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.

  2. ABSTRACT We present results from a circular polarization survey for radio stars in the Rapid ASKAP Continuum Survey (RACS). RACS is a survey of the entire sky south of δ = +41○ being conducted with the Australian Square Kilometre Array Pathfinder telescope (ASKAP) over a 288 MHz wide band centred on 887.5 MHz. The data we analyse include Stokes I and V polarization products to an RMS sensitivity of 250 μJy PSF−1. We searched RACS for sources with fractional circular polarization above 6 per cent, and after excluding imaging artefacts, polarization leakage, and known pulsars we identified radio emission coincident with 33 known stars. These range from M-dwarfs through to magnetic, chemically peculiar A- and B-type stars. Some of these are well-known radio stars such as YZ CMi and CU Vir, but 23 have no previous radio detections. We report the flux density and derived brightness temperature of these detections and discuss the nature of the radio emission. We also discuss the implications of our results for the population statistics of radio stars in the context of future ASKAP and Square Kilometre Array surveys.
  3. Abstract

    We present a study of the variation timescales of the chromospheric activity indicator Hαon a sample of 13 fully convective, active mid-to-late M stars with masses between 0.1 and 0.3 solar masses. Our goal was to determine the dominant variability timescale and, by inference, a possible mechanism responsible for the variation. We gathered 10 or more high-resolution spectra each of 10 stars using the TRES spectrograph at times chosen to span all phases of stellar rotation, as determined from photometric data from the MEarth Observatories. All stars varied in their Hαemission. For nine of these stars, we found no correlation between Hαand rotational phase, indicating that constant emission from fixed magnetic structures, such as star spots and plage, are unlikely to be the dominant source of Hαemission variability. In contrast, one star, G 7–34, shows a clear relationship between Hαand stellar rotational phase. Intriguingly, we found that this star is a member of the AB Doradus moving group and hence has the young age of 149 Myr. High-cadence spectroscopic observations of three additional stars revealed that they are variable on timescales ranging from 20 to 45 minutes, which we posit may be due to flaring behavior. For one star,more »GJ 1111, simultaneous TESS photometry and spectroscopic monitoring show an increase in Hαemission with increased photometric brightness. We conclude that low-energy flares are able to produce variation in Hαon the timescales we observe and thus may be the dominant source of Hαvariability on active fully convective M dwarfs.

    « less
  4. Chromospheric Ca II activity cycles are frequently found in late-type stars, but no systematic programs have been created to search for their coronal X-ray counterparts. The typical time scale of Ca II activity cycles ranges from years to decades. Therefore, long-lasting missions are needed to detect the coronal counterparts. The XMM-Newton satellite has so far detected X-ray cycles in five stars. A particularly intriguing question is at what age (and at what activity level) X-ray cycles set in. To this end, in 2015 we started the X-ray monitoring of the young solar-like star ɛ Eridani, previously observed on two occasions: in 2003 and in early 2015, both by XMM-Newton . With an age of 440 Myr, it is one of the youngest solar-like stars with a known chromospheric Ca II cycle. We collected the most recent Mount Wilson S-index data available for ɛ Eridani, starting from 2002, including previously unpublished data. We found that the Ca II cycle lasts 2.92 ± 0.02 yr, in agreement with past results. From the long-term XMM-Newton lightcurve, we find clear and systematic X-ray variability of our target, consistent with the chromospheric Ca II cycle. The average X-ray luminosity is 2 × 10 28 ergmore »s −1 , with an amplitude that is only a factor of 2 throughout the cycle. We apply a new method to describe the evolution of the coronal emission measure distribution of ɛ Eridani in terms of solar magnetic structures: active regions, cores of active regions, and flares covering the stellar surface at varying filling fractions. Combinations of these three types of magnetic structures can only describe the observed X-ray emission measure of ɛ Eridani if the solar flare emission measure distribution is restricted to events in the decay phase. The interpretation is that flares in the corona of ɛ Eridani last longer than their solar counterparts. We ascribe this to the lower metallicity of ɛ Eridani. Our analysis also revealed that the X-ray cycle of ɛ Eridani is strongly dominated by cores of active regions. The coverage fraction of cores throughout the cycle changes by the same factor as the X-ray luminosity. The maxima of the cycle are characterized by a high percentage of covering fraction of the flares, consistent with the fact that flaring events are seen in the corresponding short-term X-ray lightcurves predominately at the cycle maxima. The high X-ray emission throughout the cycle of ɛ Eridani is thus explained by the high percentage of magnetic structures on its surface.« less
  5. During the survey phase of the Kepler mission, several thousand stars were observed in short cadence, allowing for the detection of solar-like oscillations in more than 500 main-sequence and subgiant stars. These detections showed the power of asteroseismology in determining fundamental stellar parameters. However, the Kepler Science Office discovered an issue in the calibration that affected half of the store of short-cadence data, leading to a new data release (DR25) with corrections on the light curves. In this work, we re-analyzed the one-month time series of the Kepler survey phase to search for solar-like oscillations that might have been missed when using the previous data release. We studied the seismic parameters of 99 stars, among which there are 46 targets with new reported solar-like oscillations, increasing, by around 8%, the known sample of solar-like stars with an asteroseismic analysis of the short-cadence data from this mission. The majority of these stars have mid- to high-resolution spectroscopy publicly available with the LAMOST and APOGEE surveys, respectively, as well as precise Gaia parallaxes. We computed the masses and radii using seismic scaling relations and we find that this new sample features massive stars (above 1.2  M ⊙ and up to 2  Mmore »⊙ ) and subgiants. We determined the granulation parameters and amplitude of the modes, which agree with the scaling relations derived for dwarfs and subgiants. The stars studied here are slightly fainter than the previously known sample of main-sequence and subgiants with asteroseismic detections. We also studied the surface rotation and magnetic activity levels of those stars. Our sample of 99 stars has similar levels of activity compared to the previously known sample and is in the same range as the Sun between the minimum and maximum of its activity cycle. We find that for seven stars, a possible blend could be the reason for the non-detection with the early data release. Finally, we compared the radii obtained from the scaling relations with the Gaia ones and we find that the Gaia radii are overestimated by 4.4%, on average, compared to the seismic radii, with a scatter of 12.3% and a decreasing trend according to the evolutionary stage. In addition, for homogeneity purposes, we re-analyzed the DR25 of the main-sequence and subgiant stars with solar-like oscillations that were previously detected and, as a result, we provide the global seismic parameters for a total of 525 stars.« less