skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes
It is general knowledge in persistent luminescence that high-energy illumination, mostly ultraviolet light, is usually necessary in order to effectively charge persistent phosphors. However, the need for high-energy ultraviolet light excitation compromises some applications. In his pioneering work on ruby (Al 2 O 3 :Cr 3+ ) laser materials in 1960, Theodore Maiman observed an excited-state absorption phenomenon under the excitation of a high-intensity green-light flash tube. Inspired by Maiman's observation, here we propose a new two-photon up-conversion charging (UCC) concept to effectively charge Cr 3+ -activated near-infrared persistent phosphors using low-energy, high-intensity visible-light laser diodes. As an example, we demonstrate that a low-energy 635 nm laser diode can produce persistent luminescence in the LiGa 5 O 8 :Cr 3+ persistent phosphor at the same magnitude as that produced by high-energy 335 nm ultraviolet light from a xenon arc lamp. Moreover, the UCC appears to be a common phenomenon in persistent phosphors containing other UCC-enabling activators such as rare-earth Pr 3+ ions and transition metal Mn 2+ ions. The UCC technique offers a new way to study persistent luminescence and utilize persistent phosphors; for instance, in bioimaging it makes effective in vivo charging persistent optical probes using tissue-friendly visible light possible.  more » « less
Award ID(s):
1705707
PAR ID:
10108368
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
6
Issue:
30
ISSN:
2050-7526
Page Range / eLocation ID:
8003 to 8010
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Visible-light and infrared-light persistent phosphors are extensively studied and are being used as self-sustained glowing tags in darkness. In contrast, persistent phosphors for higher-energy, solar-blind ultraviolet-C wavelengths (200–280 nm) are lacking. Also, persistent tags working in bright environments are not available. Here we report five types of Pr3+-doped silicates (melilite, cyclosilicate, silicate garnet, oxyorthosilicate, and orthosilicate) ultraviolet-C persistent phosphors that can act as self-sustained glowing tags in bright environments. These ultraviolet-C persistent phosphors can be effectively charged by a standard 254 nm lamp and emit intense, long-lasting afterglow at 265–270 nm, which can be clearly monitored and imaged by a corona camera in daylight and room light. Besides thermal-stimulation, in bright environments, photo-stimulation also contributes to the afterglow emission and its contribution can be dominant when ambient light is strong. This study expands persistent luminescence research to the ultraviolet-C wavelengths and brings persistent luminescence applications to light.

     
    more » « less
  2. null (Ed.)
    This work reports the realization of Gd 3+ persistent luminescence in the narrowband ultraviolet-B (NB-UVB; 310–313 nm) through persistent energy transfer from a sensitizer of Pr 3+ , Pb 2+ or Bi 3+ . We propose a general design concept to develop Gd 3+ -activated NB-UVB persistent phosphors from Pr 3+ -, Pb 2+ - or Bi 3+ -activated ultraviolet-C (200–280 nm) or ultraviolet-B (280–315 nm) persistent phosphors, leading to the discovery of ten Gd 3+ NB-UVB persistent phosphors such as Sr 3 Gd 2 Si 6 O 18 :Pr 3+ , Sr 3 Gd 2 Si 6 O 18 :Pb 2+ and Y 2 GdAl 2 Ga 3 O 12 :Bi 3+ as well as five ultraviolet-B persistent phosphors such as Y 3 Al 2 Ga 3 O 12 :Pr 3+ , Sr 3 Y 2 Si 6 O 18 :Pb 2+ and Y 3 Al 2 Ga 3 O 12 :Bi 3+ . The persistent energy transfer from the sensitizers to Gd 3+ is very efficient and the Gd 3+ NB-UVB afterglow can last for more than 10 hours. This study expands the persistent luminescence research to the NB-UVB as well as the broader ultraviolet-B spectral regions. The NB-UVB persistent phosphors may act as self-sustained glowing NB-UVB radiation sources for dermatological therapy. 
    more » « less
  3. Abstract

    The ultralong‐lived upconversion luminescence with the lifetime of 0.48 s in a broad spectral range (530–650 nm) is observed in CD49 (9‐(3‐(5‐bromopyridin‐3‐yl)prop‐2‐yn‐1‐yl)‐9H‐carbazole) crystal designed with donor–acceptor (carbazole–pyridine) structures under infrared excitation, simultaneously accompanied with second harmonic generation (SHG). This phenomenon indicates orderly packing donor–acceptor structures form a nonlinearly polarizable ferroelectric‐like lattice with ultralong‐lived light‐emitting states, leading to much prolonged nonlinear optical behaviors. The persistent upconversion luminescence together with SHG is largely reduced when lowering crystallinity. This implies that nonlinearly polarizable ferroelectric‐like lattice provides the necessary condition to generate persistent upconversion luminescence. Evidently, persistent upconversion luminescence becomes completely lacking when only using ultralong‐lived light‐emitting states without nonlinearly polarizable ferroelectric‐like lattice, exampled by 4‐(dimethylamino)benzonitrile dispersed in polyvinyl alcohol matrix. Magneto‐photoluminescence shows that persistent upconversion luminescence is essentially a super‐delayed fluorescence from crystalline intermolecular charge‐transfer excitons formed in the nonlinearly polarizable ferroelectric‐like lattice. Magnetodielectrics indicate crystalline intermolecular charge‐transfer excitons are coupled with nonlinearly polarizable ferroelectric‐like lattice, leading to prolonged nonlinear optical behaviors shown as persistent upconversion luminescence through super delayed fluorescence. Therefore, crystalline intermolecular charge‐transfer excitons formed in nonlinearly polarizable ferroelectric‐like lattice provide an interesting platform to generate prolonged nonlinear optical behaviors toward developing persistent upconversion luminescence under multiphoton excitation.

     
    more » « less
  4. Desirable phosphors for lighting, scintillation and composite films must have good light absorption properties, high concentration quenching, high quantum efficiency, a narrow color emission, and so forth. In this work, we first show that undoped yttrium hafnate Y 2 Hf 2 O 7 (YHO) nanoparticles (NPs) display dual blue and red bands after excitation using 330 nm light. Based on density functional theory (DFT) calculations, these two emission bands are correlated with the defect states arising in the band-gap region of YHO owing to the presence of neutral and charged oxygen defects. Once doped with Eu 3+ ions (YHOE), the YHO NPs show a bright red emission, a long excited state lifetime and stable color coordinates upon near-UV and X-ray excitation. Concentration quenching is active when Eu 3+ doping reaches 10 mol% with a critical distance of ∼4.43 Å. This phenomenon indicates a high Eu 3+ solubility within the YHO host and the absence of Eu 3+ clusters. More importantly, the optical performance of the YHOE NPs has been further improved by lithium co-doping. The origin of the emission, structural stability, and role of Li + -co-doping are explored both experimentally and theoretically. DFT calculation results demonstrate that Li + -co-doping increases the covalent character of the Eu 3+ –O 2− bonding in the EuO 8 polyhedra. Furthermore, the YHOE NPs have been dispersed into polyvinyl alcohol (PVA) to make transparent nanocomposite films, which show strong red emission under excitation at 270 and 393 nm. Overall, we demonstrate that the YHO NPs with Eu 3+ and (Eu 3+ /Li + ) doping have a high emission intensity and quantum efficiency under UV and X-ray excitation, which makes them suitable for use as phosphors, scintillators and transparent films for lighting, imaging and detection applications. 
    more » « less
  5. Developing new persistent luminescent phosphors, a unique class of inorganic materials that can produce a visible light emission lasting minutes to hours requires improving our understanding of their fundamental structure–property relationships. Research has shown that one of the most critical components governing persistent luminescence is the existence of lattice defects in a material. Specifically, vacancies and anti-site defects that coincide with substitution of the luminescent center, e.g. , Eu 2+ or Cr 3+ , are generally considered essential to generate the ultra-long luminescent lifetimes. This research solidifies the connection between defects and the remarkable optical properties. The persistent luminescent compound Zn(Ga 1−x Al x ) 2 O 4 ( x = 0–1), which adopts a spinel-type structure, is investigated by examining the X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) at the Cr K and Zn K edges. This investigation reveals a structural distortion of the octahedrally coordinated main group metal site concurrent with increasing Al 3+ content. Moreover, these results suggest there is a dependence between the local crystallographic distortions, the presence of defects, and a material's persistent luminescence. In combination, this work provides an avenue to understand the connection between the structure–defect–property relationships that govern the properties of many functional inorganic materials. 
    more » « less