In networked control systems, the sensory signals are often quantized before being transmitted to the controller. Consequently, performance is affected by the coarseness of this quantization process. Modern communication technologies allow users to obtain resolution-varying quantized measurements based on the prices paid. In this paper, we consider the problem of joint optimal controller synthesis and quantizer scheduling for a partially observed quantized-feedback linear-quadratic-Gaussian system, where the measurements are quantized before being sent to the controller. The system is presented with several choices of quantizers, along with the cost of using each quantizer. The objective is to jointly select the quantizers and synthesize the controller to strike an optimal balance between control performance and quantization cost. When the innovation signal is quantized instead of the measurement, the problem is decoupled into two optimization problems: one for optimal controller synthesis, and the other for optimal quantizer selection. The optimal controller is found by solving a Riccati equation and the optimal quantizer-selection policy is found by solving a linear program---both of which can be solved offline.
more »
« less
Quantizers with Parameterized Distortion Measures
In many quantization problems, the distortion function is given by the Euclidean metric to measure the distance of a source sample to any given reproduction point of the quantizer. We will in this work regard distortion functions, which are additively and multiplicatively weighted for each reproduction point resulting in a heterogeneous quantization problem, as used for example in deployment problems of sensor networks. Whereas, normally in such problems, the average distortion is minimized for given weights (parameters), we will optimize the quantization problem over all weights, i.e., we tune or control the distortion functions in our favor. For a uniform source distribution in one-dimension, we derive the unique minimizer, given as the uniform scalar quantizer with an optimal common weight. By numerical simulations, we demonstrate that this result extends to two-dimensions where asymptotically the parameter optimized quantizer is the hexagonal lattice with common weights. As an application, we will determine the optimal deployment of unmanned aerial vehicles (UAVs) to provide a wireless communication to ground terminals under a minimal communication power cost. Here, the optimal weights relate to the optimal flight heights of the UAVs.
more »
« less
- Award ID(s):
- 1815339
- PAR ID:
- 10108985
- Date Published:
- Journal Name:
- Data Compression Conference (DCC-19)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘highquality’ information for optimizing the control performance under communication constraints. We show that there exist a sepatation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program.more » « less
-
In this paper we consider the information-theoretic characterization of performance limits of a broad class of multiterminal communication problems with general continuousvalued sources and channels. In particular, we consider point-topoint source coding and channel coding with side information, distributed source coding with distortion constraints and function reconstruction problems (two-help-one). We develop an approach that uses fine quantization of the source and the channel variables followed by random coding with unstructured as well as structured (linear) code ensembles. This approach leads to lattice-like codes for general sources and channels.more » « less
-
To provide a reliable wireless uplink for users in a given ground area, one can deploy Unmanned Aerial Vehicles (UAVs) as base stations (BSs). In another application, one can use UAVs to collect data from sensors on the ground. For a power efficient and scalable deployment of such flying BSs, directional antennas can be utilized to efficiently cover arbitrary 2-D ground areas. We consider a large-scale wireless path-loss model with a realistic angle-dependent radiation pattern for the directional antennas. Based on such a model, we determine the optimal 3-D deployment of N UAVs to minimize the average transmit-power consumption of the users in a given target area. The users are assumed to have identical transmitters with ideal omnidirectional antennas and the UAVs have identical directional antennas with given half-power beamwidth (HPBW) and symmetric radiation pattern along the vertical axis. For uniformly distributed ground users, we show that the UAVs have to share a common flight height in an optimal power-efficient deployment, by simulations. We also derive in closed-form the asymptotic optimal common flight height of N UAVs in terms of the area size, data-rate, bandwidth, HPBW, and path-loss exponent.more » « less
-
In the past years, Deep convolution neural network has achieved great success in many artificial intelligence applications. However, its enormous model size and massive computation cost have become the main obstacle for deployment of such powerful algorithm in the low power and resource-limited mobile systems. As the countermeasure to this problem, deep neural networks with ternarized weights (i.e. -1, 0, +1) have been widely explored to greatly reduce model size and computational cost, with limited accuracy degradation. In this work, we propose a novel ternarized neural network training method which simultaneously optimizes both weights and quantizer during training, differentiating from prior works. Instead of fixed and uniform weight ternarization, we are the first to incorporate the thresholds of weight ternarization into a closed-form representation using truncated Gaussian approximation, enabling simultaneous optimization of weights and quantizer through back-propagation training. With both of the first and last layer ternarized, the experiments on the ImageNet classification task show that our ternarized ResNet-18/34/50 only has 3.9/2.52/2.16% accuracy degradation in comparison to the full-precision counterparts.more » « less
An official website of the United States government

