skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recovery of Material Parameters in Transversely Isotropic Media
In this paper we show that in anisotropic elasticity, in the particular case of transversely isotropic media, under appropriate convexity conditions, knowledge of the qSH wave travel times determines the tilt of the axis of isotropy as well as some of the elastic material parameters, and the knowledge of qP and qSV travel times conditionally determines a subset of the remaining parameters, in the sense if some of the remaining parameters are known, the rest are determined, or if the remaining parameters satisfy a suitable relation, they are all determined, under certain non-degeneracy conditions. Furthermore, we give a precise description of the additional issues, which are a subject of ongoing work, that need to be resolved for a full treatment.  more » « less
Award ID(s):
1815143 1664683
PAR ID:
10109371
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Archive for Rational Mechanics and Analysis
ISSN:
0003-9527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drone simulators are often used to reduce training costs and prepare operators for various ad-hoc scenarios, as well as to test the quality of algorithmic and communication aspects in collaborative scenarios. An important aspect of drone missions in simulated (as well as real life) environments is the operational lifetime of a given drone, in both solo and collaborative fleet settings. Its importance stems from the fact that the capacity of the on-board batteries in untethered (i.e., free-flying) drones determines the range and/or the length of the trajectory that a drone can travel in the course of its surveilance or delivery missions. Most of the existing simulators incorporate some kind of a consumption model based on different parameters of the drone and its flight trajectory. However, to our knowledge, the existing simulators are not capable of incorporating data obtained from actual physical measurements/observations into the consumption model. In this work, we take a first step towards enabling the (users of) drones simulator to incorporate the speed and direction of the wind into the model and monitor its impact on the battery consumption as the direction of the flight changes relative to the wind. We have also developed a proof-of-concept implementation with DJI Mavic 3 and Parrot ANAFI drones. 
    more » « less
  2. Litter decomposition determines soil organic matter (SOM) formation and plant‐available nutrient cycles. Therefore, accurate model representation of litter decomposition is critical to improving soil carbon (C) projections of bioenergy feedstocks. Soil C models that simulate microbial physiology (i.e., microbial models) are new to bioenergy agriculture, and their parameterization is often based on small datasets or manual calibration to reach benchmarks. Here, we reparameterized litter decomposition in a microbial soil C model (CORPSE ‐ Carbon, Organisms, Rhizosphere, and Protection in the Soil Environment) using the continental‐scale Long‐term Inter‐site Decomposition Experiment Team (LIDET) dataset which documents decomposition across a range of litter qualities over a decade. We conducted a simplified Monte Carlo simulation that constrained parameter values to reduce computational costs. The LIDET‐derived parameters improved modeled C and nitrogen (N) remaining, decomposition rates, and litter mean residence times as compared to Baseline parameters. We applied the LIDET litter decomposition parameters to a microbial bioenergy model (Fixation and Uptake of Nitrogen – Bioenergy Carbon, Rhizosphere, Organisms, and Protection) to examine soil C estimates generated by Baseline and LIDET parameters. LIDET parameters increased estimated soil C in bioenergy feedstocks, with even greater increases under elevated plant inputs (i.e., by increasing residue, N fertilization). This was due to the integrated effects of plant litter quantity, quality, and agricultural practices (tillage, fertilization). Collectively, we developed a simple framework for using large‐scale datasets to inform the parameterization of microbial models that impacts projections of soil C for bioenergy feedstocks. 
    more » « less
  3. Abstract In this paper, we consider a multi-server, multiclass queue with reneging operating under the random order of service discipline. Interarrival times, service times, and patience times are assumed to be generally distributed. Under mild conditions, we establish a fluid limit theorem for a measure-valued process that keeps track of the remaining patience time for each job in the queue, when the number of servers and classes is held fixed. We prove uniqueness for fluid model solutions in all but one case. We characterize the unique invariant state for the fluid model and prove that fluid model solutions converge to the invariant state as time goes to infinity, uniformly for suitable initial conditions. 
    more » « less
  4. null (Ed.)
    Amplified climate warming at high northern latitudes is challenging societies that depend on local provisional and cultural ecosystem services, e.g., subsistence resources, for their livelihoods. Previous qualitative research suggests that climate-induced changes in environmental conditions are affecting rural residents’ ability to travel across the land and access local resources, but detailed information on the nature and effect of specific conditions is lacking. Our objectives were to identify climate-related environmental conditions affecting subsistence travel and access, and then estimate rural resident travel and access vulnerability to those environmental conditions. We collaborated with nine Interior Alaskan communities within the Yukon River basin and provided residents with camera equipped GPS units to document environmental conditions directly affecting subsistence access for 12 consecutive months. We also conducted comprehensive interviews with research participants to incorporate the effects of environmental conditions not documented with GPS units. Environmental conditions reported by rural residents were categorized into seven condition types. We assessed vulnerability to each condition by accounting for both likelihood (number of times a condition was documented) and sensitivity (magnitude of the effect from the condition) information derived from GPS observations and interviews. We also tested for differences in mean vulnerability values among environmental conditions and between community types (road-connected vs. remote) using a oneway analysis of variance. Rural community travel and access were most vulnerable to changes in ice conditions, erosion, vegetative community composition, and water levels. Environmental conditions that impeded natural travel corridors, e.g., waterways, more strongly influenced remote communities than those connected by roads. Increased vulnerability to environmental change puts remote communities at increased risk for food-security issues. Our study used a novel community-based approach to integrate local knowledge with scientific analysis to document and estimate the relative effects that specific environmental conditions are having on access to subsistence resources across Interior Alaska. 
    more » « less
  5. The lateral deformations of webs in roll-to-roll (R2R) process machines can affect the quality of the manufacturing process. Webs can enter a cylindrical roller normally if the forces required to sustain normal entry and do not exceed the available friction forces. Webs with simple non-uniform length variation across their width (camber) will steer toward the long side, affecting the steady state lateral deformation and hence registration. Most previous studies have focused on tests and modeling a cambered web span in a free span between two rollers. Often these studies assume some displacement and slope boundary conditions are known and seek the remaining condition(s) that would dictate the steady state lateral deformation of the cambered web in the free span. In many spans in a process machine there may be no known boundary conditions and no steady state deformation of the cambered web. The web may travel toward the long side continually from one web span until the next until a web guide attempts to return the web to an acceptable lateral location in the process machine. The simplest case of multiple span cambered web lateral behavior is that of a cambered web belt transiting two aligned rollers which is the focus of the current work. Dynamic simulation (Abaqus/Standard) has been used to better understand the response of cambered webs under tension that has been witnessed in tests. 
    more » « less