skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Performance of droop-controlled microgrids with heterogeneous inverter ratings
This paper characterizes synchronization perfor- mance and total transient power losses in droop-controlled microgrids with heterogeneously rated inverters. We consider frequency and voltage dynamics for a Kron-reduced network model with highly inductive lines in the presence of impulse disturbances. We quantify the total transient frequency and voltage deviations from synchrony and the associated total transient resistive losses through the L 2 norm of the system output. We derive closed-form expressions for this norm that depend on the heterogeneous droop gains and properties of the network. Our results indicate the importance of inertia in mitigating transient frequency deviations. We also show that if disturbances are uniform, the transient resistive losses are given by a monotonically decreasing function of the active power droop gains regardless of the network topology. Numerical examples further analyze these losses, revealing that they can be amplified by high droop gain heterogeneity. This relationship indicates that non-uniform power sharing requirements can limit performance.  more » « less
Award ID(s):
1544771
PAR ID:
10109810
Author(s) / Creator(s):
;
Date Published:
Journal Name:
European Control Conference (ECC19)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Microgrids must be able to restore voltage and frequency to their reference values during transient events; inverters are used as part of a microgrid's hierarchical control for maintaining power quality. Reviewed methods either do not allow for intuitive trade-off tuning between the objectives of synchronous state restoration, local reference tracking, and disturbance rejection, or do not consider all of these objectives. In this paper, we address all of these objectives for voltage restoration in droop-controlled inverter-based islanded micro-grids. By using distributed model predictive control (DMPC) in series with an unscented Kalman Filter (UKF), we design a secondary voltage controller to restore the voltage to the reference in finite time. The DMPC solves a reference tracking problem while rejecting reactive power disturbances in a noisy system. The method we present accounts for non-zero mean disturbances by design of a random-walk estimator. We validate the method's ability to restore the voltage in finite time via modeling a multi-node microgrid in Simulink. 
    more » « less
  2. Recent developments in the renewable energy sector have seen an unprecedented growth in residential photovoltaic (PV) installations. However, high PV penetration levels often lead to overvoltage problems in low-voltage (LV) distribution feeders. Smart inverter control such as active power curtailment (APC)-based overvoltage control can be implemented to overcome these challenges. The APC technique utilizes a constant droop-based approach which curtails power rigidly, which can lead to significant energy curtailment in the LV distribution feeders. In this paper, different variations of the APC technique with linear, quadratic, and exponential droops have been analyzed from the point-of-view of energy curtailment for a LV distribution network in North America. Further, a combinatorial approach using various droop-based APC methods in conjunction with adaptive dynamic programming (ADP) as a supplementary control scheme has also been proposed. The proposed approach minimizes energy curtailment in the LV distribution network by adjusting the droop gains. Simulation results depict that ADP in conjunction with exponential droop reduces the energy curtailment to approximately 50% compared to using the standard linear droop. 
    more » « less
  3. Cascaded Connected Microinverter (CCM) system takes the advantage of adapting low voltage stress submodules to build the high voltage output, which makes it easier and safer to achieve for many applications. The distribution of active and reactive power in the CCM system has always been interdependent, resulting in additional communication components in different submodules. Such communication components within different submodules can be avoided by droop control. Droop control is widely adopted in parallel inverter system, and it originates from the synchronous generator that active power is controlled by adjusting synchronous generator's frequency and reactive power is controlled by adjusting its output voltage. However, the traditional droop control is not suitable for the cascaded microinverter inverter system. Therefore, it's necessary to modify the droop control to make it suitable for Cascaded Microinverter system, and therefore a control method called inverse droop control is adopted for cascaded inverter system under island mode. However, it requires a large feeder inductor when it's grid connected since every submodule works as voltage source inverter. In this paper, a duality control method that feedbacks each submodule's active power and reactive power to adjust its inductor current amplitude and frequency respectively is proposed. Compared with traditional cascaded inverter system that's controlled by inverse droop control method, the big line frequency feeder inductor is saved. 
    more » « less
  4. This paper proposes a control scheme that prevents the adverse dynamic interactions between the heterogeneously controlled grid-forming inverters (GFMI) in power electronics dominated grid (PEDG) towards a resilient self-driving grid. The primary controller of GFMIs in a grid cluster can vary based on their manufacturers such as virtual synchronous generation, droop control, power synchronization control, etc. Therefore, this can introduce heterogeneity among the network of GFMIs in PEDG. Resultantly, during the interconnection of GFMIs that are based on heterogenous primary controller poses various synchronization and dynamic interaction challenges in PEDG. For instance, severe fluctuations in frequency and voltage, high ROCOF, unintended reactive power circulation that poses a threat on the overall transient stability of the PEDG. Therefore, to mitigate these adverse dynamic interactions among the heterogeneously controlled GFMIs, a force enclaved homogenization (FEH) control is proposed in a supervisory level controller. This will autonomously adjust inertia coefficients of the each GFMI to have homogenous transient response and will enforce coherency among the heterogenous DGs. This will prevent the PEDG from the adverse dynamic interactions during an interconnection and load disturbance. Various case studies are presented that validates the effectiveness of the proposed FEH control. 
    more » « less
  5. null (Ed.)
    The interconnection of distributed energy resources (DERs) in microgrids (MGs) operating in both islanded and grid-connected modes require coordinated control strategies. DERs are interfaced with voltage source inverters (VSIs) enabling interconnection. This paper proposes a load demand sharing scheme for the parallel operation of VSIs in an islanded voltage source inverter-based microgrid (VSI-MG). The ride-through capability of a heavily loaded VSI-MG, where some of the VSIs are fully loaded due to the occurrence of an event is investigated. In developing analytical equations to model the VSI, the concept of virtual synchronous machines (VSM) is applied to enable the VSI mimic the inertia effect of synchronous machines. A power frame transformation (PFT) that takes the line ratios of the MG network into account is also incorporated to yield satisfactory transient responses of both network frequency and bus voltages in the MG network. A Jacobian-based method is then developed to take into account the operational capacity of each VSI in the VSI-MG. The resulting amendable droop control constrains the VSIs within their power capabilities when an event occurs. Simulation results presented within demonstrate the effectiveness of the proposed procedure which has great potential to facilitate efforts in maintaining system reliability and resiliency. 
    more » « less