skip to main content

Title: Analyzing Three Competency Models of Advanced Manufacturing
In this research paper, we present a study in which we analyzed and compared three competency models of manufacturing to assess how well the models visually communicate advanced manufacturing (AM) competencies. Advanced manufacturing covers new industrial processes that improve upon traditional methods in quality, speed, and cost. In addition, the dynamic nature of technology and innovation has made it difficult to find a unified illustration of key advanced manufacturing skills. However, three visual models of manufacturing illustrate various stakeholders’ perceptions of the field and depict the competencies individuals need to join the AM workforce. The three models we analyzed are: U.S. Department of Labor’s Advanced Manufacturing Competency Model, the Society of Manufacturing Engineers’ Four Pillars of Manufacturing Knowledge, and the National Association of Manufacturers-endorsed Manufacturing Skills Certification System. While the content in these models has been validated by governmental, industry, and educational stakeholders, less explored is whether these models, as visual media, are readily understandable by their intended audiences. In this paper, we will provide an in-depth analysis of these models by using the six fundamental principles of visual design by Edward Tufte (2006): comparisons, causality, multivariate analysis, integration evidence, documentation, and content. Taken together, these principles allowed us to more » explore the fundamental principles of design in each model and distill promising directions for further investigation into more unified depiction of the advanced manufacturing industry sector’s competencies. « less
; ;
Award ID(s):
Publication Date:
Journal Name:
ASEE annual conference & exposition
Sponsoring Org:
National Science Foundation
More Like this
  1. In this research paper, we compare the alignment between advanced manufacturing (AM) competencies in Florida’s Career and Technical Education (CTE) AM Curriculum Framework and the U.S. Department of Labor’s Advanced Manufacturing Competency Model. AM educators are guided by state department of education documents that specify program content, while employers track the knowledge, skills, and dispositions that AM technicians require to successfully function in the workplace. The Curriculum Framework, created with input from educators and industry, shape AM curricula and course syllabi because they specify the learning outcomes that AM graduates upon completion of two-year AM degree programs. The Department of Labor’s Advanced Manufacturing Competency Model, crafted by federal policymakers and industry representatives, includes personal, academic, industry-specific, and managerial competencies needed by successful AM technicians; the Model is intended to influence technicians’ hiring, training, and evaluation. Although these documents were created by different sets of stakeholders, they “bookend” AM technicians’ school-to-career pathways. To determine the extent to which the 2019-2020 Florida AM Curriculum Framework aligns to the Department of Labor’s Advanced Manufacturing Competency Model, we used text mining to extract and compare the key competencies found in both documents. Through this approach, we compared these documents and identified: 1) frequently addressedmore »topics; 2) verbs that guided the complexity (i.e., Bloom’s Revised Taxonomy of Learning Objectives cognitive level) of the course learning task versus workplace competency; and 3) overall match between the documents. Our results suggest that the documents overlap very little, with significant misalignments in higher-level Bloom’s verbs. We present implications for educational institutions, AM policy makers, and industry; suggest a revision cycle and process; and propose an ongoing assessment model to improve the congruence between what employers want and what is taught in two-year AM degree programs.« less
  2. While rural manufacturing job availability is growing throughout the country, rural communities often lack skilled workers. Thus, it is imperative for employers to validate needed new professional competencies by understanding which skills can be taught on-the-job as well as the knowledge and abilities best gained through classroom learning and experiential learning opportunities. This enhanced understanding not only benefits employers’ hiring practices, but also it can help Career and Technical Education (CTE) programs improve curricula and expand learning opportunities to best meet students’ and employers’ needs. In this study, we triangulated industry competency model content with rural employer perspectives on new advanced manufacturing (AM) professionals’ desired competencies (i.e., the level of skill sophistication in a particular AM work area). To extract competencies for entry-level AM rural jobs, we used a deductive approach with multiple methods. First, we used Natural Language Processing (NLP) to extract, analyze, and compare the U.S. Department of Labor’s AM 2010 and 2020 Competency Models because they reflect the levels and topics AM industry professionals nationally reported as technician needs. Then, we interviewed 10 rural AM employers in North Florida to capture their perceptions of the most important competencies for new middle-skill technicians. Interview transcripts were also processedmore »using NLP to extract competency levels and topics; we compared this output to the AM Competency Model analysis results. We deduced that the most critical competencies identified by rural AM employers required direct classroom instruction, but there was a subset of skills obtainable through on-the-job training or other experiential learning. This study, with the goal of addressing employee shortages and increasing the number of technicians ready for the workforce, has implications for rural community colleges’ AM programs curricula and the role of experiential learning.« less
  3. In northwest Florida, advanced manufacturing (AM) jobs far outpace the middle-skilled technician workforce, though AM constitutes almost a quarter of the region’s total employment. From 2018-2028, of the available 4.6 million manufacturing jobs, less than half are likely to be filled due to talent shortages. This widening “skills gap” is attributed to many factors that range from new technologies in the AM industry (e.g., artificial intelligence, robotics), a need for newer recruiting methods, branding, and incentives in AM educational programs. Some professionals have even indicated that manufacturing industries and AM educational programs should be aligned more to reflect the needs of the industry. Even in the wake of Covid-19, when there have been over 700,000 manufacturing jobs lost due to market conditions, many states still have jobs that go unfilled further suggesting that there are challenges in filling AM technician positions. In a time when technicians in AM are in high demand and the number of graduates are in low supply, it is critical to identify whether AM education is meeting the needs of new professionals in the workforce and what they believe can be improved in these programs. This is especially true in rural locales, where economies with manufacturingmore »industries are much more reliant on them. In the context of a NSF Advanced Technological Education (ATE), through a multi-method approach, we sought to understand: 1) Which AM competencies skills did participants report as benefiting them in gaining employment? 2) Which competencies are needed on the job to be a successful AM technician? 3) What are the ways in which AM preparation can be improved to enhance employment outcomes? This study’s results will expand the research base and curriculum content recommendations for regional AM education, as well as build regional capacity for AM program assessment and improvement by replicating, refining, and disseminating study approaches through further research, annual AM employer and educator meetings, and annual research skill-building academies in which stakeholders transfer research findings to practices and policies that empower rural NW Florida colleges. To date, research efforts have demonstrated that competency perceptions of faculty, employers, and new professionals have notable misalignments that have opportunities for AM program curriculum revision and enhancement. This paper summarizes five years of research output, emphasizing the impactful findings and dissemination products for ASEE community members, as well as opportunities for further research.« less
  4. In this research paper, we report our assessment of the congruence between two-year advanced manufacturing (AM) program syllabi to employer needs expressed in the Department of Labor’s (DOL) AM Competency Model. The dynamic AM industry relies on two-year AM technician program graduates from state and community colleges. These program curricula are mandated to reflect state career and technology education (CTE) curriculum frameworks, but the frameworks are not designed to measure graduates' abilities to meet AM employers’ current needs. Because this technology-reliant industry changes so quickly, faculty are challenged to source, develop, and implement responsive educational experiences. Through consultation with industry leaders, the Department of Labor (DOL) developed an AM competency model to illustrate and promote workers’ necessary knowledge, skills, and dispositions. To determine whether the AM competency model can function as an exit assessment for AM program graduates, we compared AM program syllabi from five rural Northwest Florida state colleges to the DOL AM Competency Model. We text-mined competencies in both syllabi and the AM Competency Model and compared them to identify: 1) frequently addressed topics; 2) verbs guiding course learning outcomes versus the skill depth desired by employers; and 3) overall match between documents. Our findings indicate that despitemore »being developed to reflect the same curriculum framework, the five AM programs’ topical and complexity emphases varied widely. Overall, AM Competency Model content reflected higher levels of the Bloom’s Revised Taxonomy of Educational Objectives, highlighting industry commitments to fostering analysis, evaluation, and creation. We conclude with implications for educational institutions, AM policymakers, and industry, outline the need for an AM Body of Knowledge, and propose an ongoing assessment model to improve the congruence between what employers want and what is taught in two-year AM degree programs.« less
  5. Global economists have cited advanced manufacturing (AM) as one of the fastest growing, dynamic, and economically instrumental industry sectors in the world. In response, many community colleges and undergraduate-serving institutions have established technician education programs to prepare future workers to support AM vitality and innovation. However, in the rush to couple market and training demands, stakeholders have not agreed upon a definition of the field. Without a central notion of AM, the competencies and professional identities of AM workers are likewise unclear. In an effort to address this consensus gap, we undertook an extensive systematic review of AM definitions to chart of sector’s topography, in an effort to understand AM’s breadth and depth. The goals of this study were to: 1) define AM as perceived by policymakers and 2) identify important concepts and contextual factors that comprise and shape our understanding of AM. In this study, we used systematic policy and literature review approach to analyze canonical and research-based publications pertaining to AM’s origins, components, and operational definitions. We classified, compared, and synthesized definitions of AM depending by stakeholder, for example, professional organizations, government agencies, or educational program accreditors. Among our notable findings is that in the eyes of policymakers,more »manufacturers are advanced not because they make certain products, but because they have adopted sophisticated business models and production techniques. Advanced manufacturers typically use a combination of three factors to remain competitive: “advanced knowledge,” “advanced processes,” and “advanced business models.” This study is both timely and important because in a dynamic field such as AM, educators and industry leaders must work together to meet workforce needs. Clear understanding of AM can inform competency models, bodies of knowledge, and empirical research that documents school-to-career pathways. Both our findings and our methods may shed light on the nature of related technical fields and offer industry and education strategies to ensure their alignment.« less