 Award ID(s):
 1637534
 NSFPAR ID:
 10110193
 Date Published:
 Journal Name:
 Proceedings of ACM/IEEE Supercomputing Conference (SC18)
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

We consider the maximum vertexweighted matching problem (MVM), in which nonnegative weights are assigned to the vertices of a graph, and the weight of a matching is the sum of the weights of the matched vertices. Although exact algorithms for MVM are faster than exact algorithms for the maximum edgeweighted matching problem, there are graphs on which these exact algorithms could take hundreds of hours. For a natural number k, we design a k/(k + 1)approximation algorithm for MVM on nonbipartite graphs that updates the matching along certain short paths in the graph: either augmenting paths of length at most 2k + 1 or weightincreasing paths of length at most 2k. The choice of k = 2 leads to a 2/3approximation algorithm that computes nearly optimal weights fast. This algorithm could be initialized with a 2/3approximate maximum cardinality matching to reduce its runtime in practice. A 1/2approximation algorithm may be obtained using k = 1, which is faster than the 2/3approximation algorithm but it computes lower weights. The 2/3approximation algorithm has time complexity O(Δ2m) while the time complexity of the 1/2approximation algorithm is O(Δm), where m is the number of edges and Δ is the maximum degree of a vertex. Results from our serial implementations show that on average the 1/2approximation algorithm runs faster than the Suitor algorithm (currently the fastest 1/2approximation algorithm) while the 2/3approximation algorithm runs as fast as the Suitor algorithm but obtains higher weights for the matching. One advantage of the proposed algorithms is that they are wellsuited for parallel implementation since they can process vertices to match in any order. The 1/2 and 2/3approximation algorithms have been implemented on a shared memory parallel computer, and both approximation algorithms obtain good speedups, while the former algorithm runs faster on average than the parallel Suitor algorithm. Care is needed to design the parallel algorithm to avoid cyclic waits, and we prove that it is livelock free.more » « less

null (Ed.)We present an optimized FloydWarshall (FloydWarshall) algorithm that computes the Allpairs shortest path (APSP) for GPU accelerated clusters. The FloydWarshall algorithm due to its structural similarities to matrixmultiplication is well suited for highly parallel GPU architectures. To achieve high parallel efficiency, we address two key algorithmic challenges: reducing high communication overhead and addressing limited GPU memory. To reduce high communication costs, we redesign the parallel (a) to expose more parallelism, (b) aggressively overlap communication and computation with pipelined and asynchronous scheduling of operations, and (c) tailored MPIcollective. To cope with limited GPU memory, we employ an offload model, where the data resides on the host and is transferred to GPU ondemand. The proposed optimizations are supported with detailed performance models for tuning. Our optimized parallel FloydWarshall implementation is up to 5x faster than a strong baseline and achieves 8.1 PetaFLOPS/sec on 256~nodes of the Summit supercomputer at Oak Ridge National Laboratory. This performance represents 70% of the theoretical peak and 80% parallel efficiency. The offload algorithm can handle 2.5x larger graphs with a 20% increase in overall running time.more » « less

We describe a paradigm for designing parallel algorithms via approximation, and illustrate it on the bedgecover problem. A bedgecover of minimum weight in a graph is a subset $C$ of its edges such that at least a specified number $b(v)$ of edges in $C$ is incident on each vertex $v$, and the sum of the edge weights in $C$ is minimum. The Greedy algorithm and a variant, the LSE algorithm, provide $3/2$approximation guarantees in the worstcase for this problem, but these algorithms have limited parallelism. Hence we design two new $2$approximation algorithms with greater concurrency. The MCE algorithm reduces the computation of a bedgecover to that of finding a b'matching, by exploiting the relationship between these subgraphs in an approximation context. The LSENW is derived from the LSEalgorithm using static edge weights rather than dynamically computing effective edge weights. This relaxation gives LSE a worse approximation guarantee but makes it more amenable to parallelization. We prove that both the MCE and LSENW algorithms compute the same bedgecover with at most twice the weight of the minimum weight edge cover. In practice, the $2$approximation and $3/2$approximation algorithms compute edge covers of weight within $10\%$ the optimal. We implement three of the approximation algorithms, MCE, LSE, and LSENW on shared memory multicore machines, including an Intel Xeon and an IBM Power8 machine with 8 TB memory. The MCE algorithm is the fastest of these by an order of magnitude or more. It computes an edge cover in a graph with billions of edges in $20$ seconds using two hundred threads on the IBM Power8. We also show that the parallel depth and work can be bounded for the Suitor and bSuitor algorithms when edge weights are random.more » « less

Computational fluid dynamics (CFD) is increasingly used to study blood flows in patientspecific arteries for understanding certain cardiovascular diseases. The techniques work quite well for relatively simple problems but need improvements when the problems become harder when (a) the geometry becomes complex (eg, a few branches to a full pulmonary artery), (b) the model becomes more complex (eg, fluidonly to coupled fluidstructure interaction), (c) both the fluid and wall models become highly nonlinear, and (d) the computer on which we run the simulation is a supercomputer with tens of thousands of processor cores. To push the limit of CFD in all four fronts, in this paper, we develop and study a highly parallel algorithm for solving a monolithically coupled fluidstructure system for the modeling of the interaction of the blood flow and the arterial wall. As a case study, we consider a patientspecific, full size pulmonary artery obtained from computed tomography (CT) images, with an artificially added layer of wall with a fixed thickness. The fluid is modeled with a system of incompressible NavierStokes equations, and the wall is modeled by a geometrically nonlinear elasticity equation. As far as we know, this is the first time the unsteady blood flow in a full pulmonary artery is simulated without assuming a rigid wall. The proposed numerical algorithm and software scale well beyond 10 000 processor cores on a supercomputer for solving the fluidstructure interaction problem discretized with a stabilized finite element method in space and an implicit scheme in time involving hundreds of millions of unknowns.more » « less

Abstract Computational fluid dynamics (CFD) is increasingly used to study blood flows in patient‐specific arteries for understanding certain cardiovascular diseases. The techniques work quite well for relatively simple problems but need improvements when the problems become harder when (a) the geometry becomes complex (eg, a few branches to a full pulmonary artery), (b) the model becomes more complex (eg, fluid‐only to coupled fluid‐structure interaction), (c) both the fluid and wall models become highly nonlinear, and (d) the computer on which we run the simulation is a supercomputer with tens of thousands of processor cores. To push the limit of CFD in all four fronts, in this paper, we develop and study a highly parallel algorithm for solving a monolithically coupled fluid‐structure system for the modeling of the interaction of the blood flow and the arterial wall. As a case study, we consider a patient‐specific, full size pulmonary artery obtained from computed tomography (CT) images, with an artificially added layer of wall with a fixed thickness. The fluid is modeled with a system of incompressible Navier‐Stokes equations, and the wall is modeled by a geometrically nonlinear elasticity equation. As far as we know, this is the first time the unsteady blood flow in a full pulmonary artery is simulated without assuming a rigid wall. The proposed numerical algorithm and software scale well beyond 10 000 processor cores on a supercomputer for solving the fluid‐structure interaction problem discretized with a stabilized finite element method in space and an implicit scheme in time involving hundreds of millions of unknowns.