skip to main content

Title: Limits of Cation Solubility in AMg2Sb2 (A = Mg, Ca, Sr, Ba) Alloys
A M 2 X 2 compounds that crystallize in the CaAl 2 Si 2 structure type have emerged as a promising class of n- and p-type thermoelectric materials. Alloying on the cation (A) site is a frequently used approach to optimize the thermoelectric transport properties of A M 2 X 2 compounds, and complete solid solubility has been reported for many combinations of cations. In the present study, we investigate the phase stability of the AMg 2 Sb 2 system with mixed occupancy of Mg, Ca, Sr, or Ba on the cation (A) site. We show that the small ionic radius of Mg 2 + leads to limited solubility when alloyed with larger cations such as Sr or Ba. Phase separation observed in such cases indicates a eutectic-like phase diagram. By combining these results with prior alloying studies, we establish an upper limit for cation radius mismatch in A M 2 X 2 alloys to provide general guidance for future alloying and doping studies.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mg 3 Sb 2 –Mg 3 Bi 2 alloys have been heavily studied as a competitive alternative to the state-of-the-art n-type Bi 2 (Te,Se) 3 thermoelectric alloys. Using Mg 3 As 2 alloying, we examine another dimension of exploration in Mg 3 Sb 2 –Mg 3 Bi 2 alloys and the possibility of further improvement of thermoelectric performance was investigated. While the crystal structure of pure Mg 3 As 2 is different from Mg 3 Sb 2 and Mg 3 Bi 2 , at least 15% arsenic solubility on the anion site (Mg 3 ((Sb 0.5 Bi 0.5 ) 1−x As x ) 2 : x = 0.15) was confirmed. Density functional theory calculations showed the possibility of band convergence by alloying Mg 3 Sb 2 –Mg 3 Bi 2 with Mg 3 As 2 . Because of only a small detrimental effect on the charge carrier mobility compared to cation site substitution, the As 5% alloyed sample showed zT = 0.6–1.0 from 350 K to 600 K. This study shows that there is an even larger composition space to examine for the optimization of material properties by considering arsenic introduction into the Mg 3 Sb 2 –Mg 3 Bi 2 system. 
    more » « less
  2. Compounds that crystallize in the layered CaAl 2 Si 2 structural pattern have rapidly emerged as an exciting class of thermoelectric materials with attractive n- and p-type properties. More than 100 AM 2 X 2 compounds that form this structure type – characterized by anionic M 2 X 2 slabs sandwiched between layers of octahedrally coordinated A cations – provide numerous potential paths to chemically tune every aspect of thermoelectric transport. This review highlights the chemical diversity of this structure type, discusses the rules governing its formation and stability relative to competing AM 2 X 2 structures ( e.g. , ThCr 2 Si 2 and BaCu 2 S 2 ), and attempts to bring some of the most recently discovered compounds into the spotlight. The discussion of thermoelectric transport properties in AM 2 X 2 compounds focuses primarily on the intrinsic parameters that determine the potential for a high figure of merit: the band gap, effective mass, degeneracy, carrier relaxation time, and lattice thermal conductivity. We also discuss routes that have been used to successfully control the carrier concentration, including controlling the cation vacancy concentration, doping, and isoelectronic alloying (approaches that are highly interdependent). Finally, we discuss recent progress made towards n-type doping in this system, highlight opportunities for further improvements, as well as open questions that still remain. 
    more » « less
  3. Alloying is a common technique to optimize the functional properties of materials for thermoelectrics, photovoltaics, energy storage etc. Designing thermoelectric (TE) alloys is especially challenging because it is a multi-property optimization problem, where the properties that contribute to high TE performance are interdependent. In this work, we develop a computational framework that combines first-principles calculations with alloy and point defect modeling to identify alloy compositions that optimize the electronic, thermal, and defect properties. We apply this framework to design n-type Ba 2(1− x ) Sr 2 x CdP 2 Zintl thermoelectric alloys. Our predictions of the crystallographic properties such as lattice parameters and site disorder are validated with experiments. To optimize the conduction band electronic structure, we perform band unfolding to sketch the effective band structures of alloys and find a range of compositions that facilitate band convergence and minimize alloy scattering of electrons. We assess the n-type dopability of the alloys by extending the standard approach for computing point defect energetics in ordered structures. Through the application of this framework, we identify an optimal alloy composition range with the desired electronic and thermal transport properties, and n-type dopability. Such a computational framework can also be used to design alloys for other functional applications beyond TE. 
    more » « less
  4. High-throughput calculations (first-principles density functional theory and semi-empirical transport models) have the potential to guide the discovery of new thermoelectric materials. Herein we have computationally assessed the potential for thermoelectric performance of 145 complex Zintl pnictides. Of the 145 Zintl compounds assessed, 17% show promising n-type transport properties, compared with only 6% showing promising p-type transport. We predict that n-type Zintl compounds should exhibit high mobility μ n while maintaining the low thermal conductivity κ L typical of Zintl phases. Thus, not only do candidate n-type Zintls outnumber their p-type counterparts, but they may also exhibit improved thermoelectric performance. From the computational search, we have selected n-type KAlSb 4 as a promising thermoelectric material. Synthesis and characterization of polycrystalline KAlSb 4 reveals non-degenerate n-type transport. With Ba substitution, the carrier concentration is tuned between 10 18 and 10 19 e − cm −3 with a maximum Ba solubility of 0.7% on the K site. High temperature transport measurements confirm a high μ n (50 cm 2 V −1 s −1 ) coupled with a near minimum κ L (0.5 W m −1 K −1 ) at 370 °C. Together, these properties yield a zT of 0.7 at 370 °C for the composition K 0.99 Ba 0.01 AlSb 4 . Based on the theoretical predictions and subsequent experimental validation, we find significant motivation for the exploration of n-type thermoelectric performance in other Zintl pnictides. 
    more » « less
  5. Electron doping in perovskites is an effective approach to design and tailor the structure and property of materials. In A 2 BB′O 6−δ -type double perovskites, B-site cation order can be tunable by A-site modification, potentially leading to significant effect on the oxygen nonstoichiometry of the compounds. La 3+ -doped Sr 2 FeMoO 6−δ (Sr 2−x La x FeMoO 6−δ , SLFM with 0 ≤ x ≤ 1) double perovskites have been designed and characterized systematically in this study as anode materials for solid oxide fuel cells. Rietveld refinement of powder X-ray diffraction reveals a crystalline symmetry transition of SLFM from tetragonal to orthorhombic with the increase of La content, driven by the extra electron onto the antibonding orbitals of e g and t 2g of Fe/Mo cations. An increase in Fe/Mo anti-site defect accompanies this phase transition. Solid oxide fuel cells incorporating the Sr 1.8 La 0.2 FeMoO 6−δ (SLFM2) anode demonstrate impressive power outputs and stable performance under direct CH 4 operation because of its altered electronic structure, desired oxygen vacancy concentration and enhanced reducibility. Density functional theory plus U correction calculations provide an insight into how La doping affects the Fe/Mo anti-site defects and consequently the oxygen transport dynamics. 
    more » « less