skip to main content


Title: Integrating Computational Modeling in K-12 STEM Classrooms
C2STEM is a web-based learning environment founded on a novel paradigm that combines block-structured, visual programming with the concept of domain specific modeling languages (DSMLs) to promote the synergistic learning of discipline-specific and computational thinking (CT) concepts and practices. Our design-based, collaborative learning environment aims to provide students in K-12 classrooms with immersive experiences in CT through computational modeling in realistic scenarios (e.g., building models of scientific phenomena). The goal is to increase student engagement and include inclusive opportunities for developing key computational skills needed for the 21st century workforce. Research implementations that include a semester-long high school physics classroom study have demonstrated the effectiveness of our approach in supporting synergistic learning of STEM and CS/CT concepts and practices, especially when compared to a traditional classroom approach. This technology demonstration will showcase our CS+X (X = physics, marine biology, or earth science) learning environment and associated curricula. Participants can engage in our design process and learn how to develop curricular modules that cover STEM and CS/CT concepts and practices. Our work is supported by an NSF STEM+C grant and involves a multi-institutional team comprising Vanderbilt University, SRI International, Looking Glass Ventures, Stanford University, Salem State University, and ETR. More information, including example computational modeling tasks, can be found at C2STEM.org.  more » « less
Award ID(s):
1640199
NSF-PAR ID:
10110545
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Proceedings of the 50th ACM Technical Symposium on Computer Science Education
Page Range / eLocation ID:
1288 to 1288
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synergistic learning of computational thinking (CT) and STEM has proven to effective in helping students develop better understanding of STEM topics, while simultaneously acquiring CT concepts and practices. With the ubiquity of computational devices and tools, advances in technology,and the globalization of product development, it is important for our students to not only develop multi-disciplinary skills acquired through such synergistic learning opportunities, but to also acquire key collaborative learning and problem-solving skills. In this paper, we describe the design and implementation of a collaborative learning-by-modeling environment developed for high school physics classrooms. We develop systematic rubrics and discuss the results of key evaluation schemes to analyze collaborative synergistic learning of physics and CT concepts and practices. 
    more » « less
  2. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system. 
    more » « less
  3. The impact of robotics has grown beyond research laboratories and industrial facilities into home environments and primary and secondary school classrooms. Of particular interest to us are robots for education. In general, educational robotics kits are expensive and proprietary, or cheap and unreliable. This research seeks to bridge that gap by providing a hands-on open-source robotics learning environment that is both inexpensive and reliable. In this paper, we review the applicability of such environments to support the synergistic learning of computational thinking (CT) and STEM, with an emphasis on Computer Science (CS) concepts and practices. The CT and Advanced Placement CS Principles frameworks (from the US) govern the design and implementation of our system. We discuss the hardware system of the robot and the accompanying software architecture that runs on Linux-based single board computers. We conclude with results from a small pilot study analyzing the usability and curricular effectiveness of the system. 
    more » « less
  4. Background/Context: Bi/multilingual students’ STEM learning is better supported when educators leverage their language and cultural practices as resources, but STEM subject divisions have been historically constructed based on oppressive, dominant values and exclude the ways of knowing of nondominant groups. Truly promoting equity requires expanding and transforming STEM disciplines. Purpose/Objective/Research Question/Focus of Study: This article contributes to efforts to illuminate emergent bi/multilingual students’ ways of knowing, languaging, and doing in STEM. We follow the development of syncretic literacies in relation to translanguaging practices, asking, How do knowledges and practices from different communities get combined and reorganized by students and teachers in service of new modeling practices? Setting and Participants: We focus on a seventh-grade science classroom, deliberately designed to support syncretic literacies and translanguaging practices, where computer science concepts were infused into the curriculum through modeling activities. The majority of the students in the bilingual program had arrived in the United States at most three years before enrolling, from the Caribbean and Central and South America. Research Design: We analyze one lesson that was part of a larger research–practice partnership focused on teaching computer science through leveraging translanguaging practices and syncretic literacies. The lesson was a modeling and computing activity codesigned by the teacher and two researchers about post–Hurricane María outmigration from Puerto Rico. Analysis used microethnographic methods to trace how students assembled translanguaging, social, and schooled practices to make sense of and construct models. Findings/Results: Findings show how students assembled representational forms from a variety of practices as part of accomplishing and negotiating both designed and emergent goals. These included sensemaking, constructing, explaining, justifying, and interpreting both the physical and computational models of migration. Conclusions/Recommendations: Implications support the development of theory and pedagogy that intentionally make space for students to engage in meaning-making through translanguaging and syncretic practices in order to provide new possibilities for lifting up STEM learning that may include, but is not constrained by, disciplinary learning. Additional implications for teacher education and student assessment practices call for reconceptualizing schooling beyond day-to-day curriculum as part of making an ontological shift away from prioritizing math, science, and CS disciplinary and language objectives as defined by and for schooling, and toward celebrating, supporting, and centering students’ diverse, syncretic knowledges and knowledge use. 
    more » « less
  5. Synergistic learning of computational thinking (CT) and STEM has proven to be an effective method for enhancing CT education as well as advancing learning in many STEM domains. Domain Specific Modeling Languages (DSML) facilitate the building of computational modeling frameworks that are directly linked to STEM content, thus making it easier for students to focus on concepts and practices. At the same time, teachers can more easily relate curricular content to the model building tasks. This paper discusses the design, development, and implementation of a robotics DSML to support a middle school geometry curriculum. 
    more » « less