skip to main content


Title: Analyzing Students' Design Solutions in an NGSS-aligned Earth Sciences Curriculum
This paper analyzes students’ design solutions for an NGSS aligned earth sciences curriculum, the Playground Design Challenge (PDC), for upper-elementary school (grade 5 and 6) students.We present the underlying computational model and the user interface for generating design solutions for a school playground that has to meet cost, water runoff, and accessibility constraints. We use data from the pretest and posttest assessments and activity logs collected from a pilot study run in an elementary school to evaluate the effectiveness of the curriculum and investigate the relations between students’ behaviors and their learning performances. The results show that (1) the students’ scores significantly increased from pretest to posttest on engineering design assessments, and (2) students’ solution-generation and testing behaviors were indicative of the quality of their design solutions as well as their pre-post learning gains. In the future, tracking such behaviors online will allow us to provide adaptive scaffolds that help students improve on their engineering design solutions.  more » « less
Award ID(s):
1742195
NSF-PAR ID:
10110551
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 20th International Conference on Artificial Intelligence in Education
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A multidisciplinary service-learning project that involved teaching engineering to fourth and fifth graders was implemented in three sets of engineering and education classes to determine if there was an impact on engineering knowledge and teamwork skills in both the engineering and education students as well as persistence in the engineering students. Collaboration 1 paired a 100-level engineering Information Literacy class in Mechanical and Aerospace Engineering with a 300-level Educational Foundation class. Collaboration 2 combined a 300-level Electromechanical Systems class in Mechanical Engineering with a 400-level Educational Technology class. Collaboration 3 paired a 300-level Fluid Mechanics class in Mechanical Engineering Technology with a 400-level Elementary Science Methods class. Collaborations 1 and 3 interacted with fourth or fifth graders by developing and delivering lessons to the elementary students. Students in collaboration 2 worked with fifth graders in an after-school technology club. While each collaboration had its unique elements, all collaborations included the engineering design process both in classroom instruction and during the service learning project. Quantitative data were collected from both engineering and education students in a pretest/posttest design. Teamwork skills were measured in engineering students using a validated teamwork skills assessment based on peer evaluation. Each class had a comparison class taught by the same instructor that included a team project, and the same quantitative measures. Engineering students who participated in collaboration 1 were evaluated for retention, which was defined as students who were still enrolled in the college of engineering and technology two semesters after completion of the course. Engineering students also completed an evaluation of academic and professional persistence. For the engineering students, none of the assessments involving technical skills had significant differences, although the design process knowledge tests trended upward in the treatment classes. The preservice teachers in the treatment group scored significantly higher in the design process knowledge test, and preservice teachers in collaborations 1 and 3 had higher scores in the engineering knowledge test than the comparison group. Teamwork skills in the treatment group were significantly higher than in the comparison group for both engineering and education students. Thus, engineering and education students in the treatment groups saw gains in teamwork skills, while education students saw more gains in engineering knowledge. Finally, all engineering students had significantly higher professional persistence. 
    more » « less
  2. Chemical engineers frequently contribute to the advancement of the medical field; however, medical applications are often only covered in elective courses. To introduce medical applications into the core curriculum, we implemented a hands-on learning tool that portrays blood separation principles through microbead settling in a core third-year chemical engineering separations class. Test scores from twenty-six students show significant growth at p < 0.001 from Pretest to Posttest I at average values of 41 % and 68 %, respectively. Posttest II scores reveal a significantly higher average score of 84 % for students who sat through lecture before the hands-on experiment in comparison to 75 % for students who first had the hands-on experiment then lecture with statistical significance of p = 0.046 and a moderate Cohen’s d effect size of 0.442. Students report positive, lasting impressions from the guided-learning worksheet and hands-on learning experience on their feedback surveys and one-on-one interviews. Retention assessments from four students six months post-intervention reveal retention of concepts with an average test score of 74 %. These outcomes suggest hands-on learning tools are most impactful on conceptual and motivational gains when supplemented with pre-experiment lectures and quality complementary learning materials. 
    more » « less
  3. Abstract Background

    Despite the importance of understanding the mechanism of natural selection for both academic success and everyday decision-making, this concept is one of the most challenging to learn in contemporary science. In addition to cumulative socio-cultural influences, intuitive cognitive biases such as the teleological bias—the early developing tendency to explain phenomena in terms of function or purpose—contribute to the difficulty of accurate learning when the process is taught in high school or later. In this work, we therefore investigate—for the first time—the viability of a teacher-led classroom-based storybook intervention for teaching natural selection in early elementary school. The intervention was designed to counteract teleological explanations of adaptation. In consequence, we specifically examined the nature and extent of elementary school children’s teleological reasoning about biological trait change before and after this intervention.

    Results

    Second and third grade students demonstrated a variety of misunderstandings at pretest, including teleological preconceptions. Most of these teleological ideas were explicitly accompanied by incorrect mechanistic ideas, confirming that the teleological reasoning observed in this young sample reflected fundamental misunderstandings of adaptation as a goal-directed event. Overall, learning from the classroom intervention was substantial, with students performing significantly better on all measures of natural selection understanding at posttest. Interestingly, explicit teleological reasoning displayed at the pretest did not have a differentially greater impact on learning than other kinds of marked pretest misunderstandings. One explanation for this might be that children displaying teleological misunderstandings at pretest also tended to demonstrate more biological factual knowledge than other students. Another explanation might be that pretest misunderstandings that were not overtly teleological were, nevertheless, implicitly teleological due to the nature of the mechanisms that they referenced. The differential impact of teleological preconceptions on learning might therefore have been underestimated.

    Conclusions

    In summary, early elementary school children show substantial abilities to accurately learn natural selection from a limited but scalable classroom-based storybook intervention. While children often display explicit teleological preconceptions, it is unclear whether these ideas represent greater impediments to learning about adaptation than other substantial misunderstandings. Reasons for this, and limitations of the present research, are discussed.

     
    more » « less
  4. In the ConnecTions in the Making project, researchers and district partners work to develop and study community-connected, integrated science and engineering curriculum units that support diverse elementary students’ science and engineering ideas, practices, and attitudes. In the community-connected units, students in the third, fourth, and fifth grades use human-centered design strategies to prototype and share functional solutions to a design challenge rooted in the students’ local community while scientifically exploring the phenomena and mechanisms related to the challenge. One of the units is “Accessible Playground Design,” a grade three unit that engages students in designing a piece of accessible playground equipment. It comprises 10 lessons, approximately 1 hour each, including a launch lesson, followed by four inquiry and four engineering design lessons, and a final design exposition. 
    more » « less
  5. Abstract

    Student science proficiency development demands sustainable and coherent learning environment support. Scholars argue that project‐based learning (PBL) is an efficient approach to promoting student science learning, compared to conventional instructions. Yet, few studies have delved into the learning process to explore how a coherent PBL system consisting of curriculum, instruction, assessment, and professional learning promotes student learning. To address the gap, this study investigated whether students' science proficiency on the three post‐unit assessments predicted their achievement on a third‐party‐designed end‐of‐year summative science test in a coherent high school chemistry PBL system aligned with the recent US science standards. The study employed a cluster randomized experimental design to test an intervention using our PBL system and only used data from the treatment group. The sample consisted of 1344 treatment students who participated in our PBL intervention and underwent the pretest and end‐of‐year summative test. Students' responses to the three post‐unit assessments were selected and rated to indicate their science proficiency. Two‐level hierarchical linear models were employed to explore the effects of students' performances of three post‐unit assessments on their end‐of‐year summative achievement, considering and controlling for student prior knowledge (i.e., pretest and prior post‐unit assessments). This study suggests two main findings. First, students' science proficiency in the three units could cumulatively and individually predict their summative science achievement. Second, students' performances on the two types of tasks (i.e., developing and using models) in the three post‐unit assessments could also be used to predict their summative science achievement. This research contributes to the field by showing that a coherent standards‐aligned PBL system can significantly and sustainably impact student science proficiency development.

     
    more » « less