Kinetics and mechanism of the solid-acid catalyzed one-pot conversion of d-fructose to 5, 5′-[oxybis(methylene)]bis[2-furaldehyde] in dimethyl sulfoxide
- Award ID(s):
- 1704144
- PAR ID:
- 10110596
- Date Published:
- Journal Name:
- SN Applied Sciences
- Volume:
- 1
- Issue:
- 9
- ISSN:
- 2523-3963
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract This article contains detailed synthetic protocols for preparation of 5‐cyanomethyluridine (cnm5U) and 5‐cyanouridine (cn5U) phosphoramidites. The synthesis of the cnm5U phosphoramidite building block starts with commercially available 5‐methyluridine (m5C), followed by bromination of the 5‐methyl group to install the cyano moiety using TMSCN/TBAF. The cn5U phosphoramidite is obtained by regular Vorbrüggen glycosylation of the protected ribofuranose with silylated 5‐cyanouracil. These two modified phosphoramidites are suitable for synthesis of RNA oligonucleotides on solid phase using conventional amidite chemistry. Our protocol provides access to two novel building blocks for constructing RNA‐based therapeutics. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Preparation of cnm5U and cn5U phosphoramidites Basic Protocol 2: Synthesis, purification, and characterization of cnm5U‐ and cn5U‐modified RNA oligonucleotidesmore » « less
-
N -(5-Cyanononan-5-yl)benzamide, C 17 H 24 N 2 O, synthesized from the reaction between benzoyl chloride and 2-amino-2-butylhexanenitrile, is an important intermediate in amino acid synthesis. Intermolecular N—H...O and C—H...O hydrogen bonds with N...O and C...O distances of 3.083 (2) and 3.304 (2) Å, respectively, link adjacent molecules into chains along the a axis. The dihedral angle between the mean plane of the phenyl group and the plane of the amide group is 19.504 (4)°.more » « less
-
Lignin is the most abundant natural, aromatic-containing biopolymer. Among all the C–C and C–O bonds being cleaved in catalytic fractionation, the 5–5 linkage is the strongest, and its scission requires harsh conditions. Theoretical investigations of the mechanism and kinetics could provide insights into developing better catalysts but are essentially lacking. We perform extensive density functional theory calculations on 2-methoxy-1,1′-biphenyl, a model compound, with various substitutions at all ring locations on Ru(0001). We analyze the competition between the 5–5 bond cleavage and the defunctionalization of the side functional groups at multiple degrees of depolymerization. The role of ring functional groups in the adsorption of lignin oligomers and the 5–5 bond scission and, conversely, the effect of the aromatic group on the −OCH3 decomposition are also discussed. We show that increasing the number of methoxy groups decreases the C–C barrier, and thus, we expect the following depolymerization ranking: grass > softwood > hardwood. While Ru exposes modest 5–5 bond scission reaction barriers from some intermediates, rapid side group chemistry prevents the formation of these intermediates; instead, scission happens most probably from defunctionalized compounds whose C–C scission barriers are high. Our results also expose the existence of multiple Brønsted–Evans–Polanyi relations in the catalytic transformation of biphenyl-based molecules that open up the possibility of modeling depolymerization of large lignin chains.more » « less
An official website of the United States government

