Age of Information (AoI) is a performance metric that captures the freshness of the information from the perspective of the destination. The AoI measures the time that elapsed since the generation of the packet that was most recently delivered to the destination. In this paper, we consider a singlehop wireless network with a number of nodes transmitting timesensitive information to a Base Station and address the problem of minimizing the Expected Weighted Sum AoI of the network while simultaneously satisfying timely-throughput constraints from the nodes. We develop three low-complexity transmission scheduling policies that attempt to minimize AoI subject to minimum throughput requirements and evaluate their performance against the optimal policy. In particular, we develop a randomized policy, a Max- Weight policy and a Whittle’s Index policy, and show that they are guaranteed to be within a factor of two, four and eight, respectively, away from the minimum AoI possible. In contrast, simulation results show that Max-Weight outperforms the other policies, both in terms of AoI and throughput, in every network configuration simulated, and achieves near optimal performance.
more »
« less
Minimizing the Age of Information in Wireless Networks with Stochastic Arrivals
We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound.
more »
« less
- Award ID(s):
- 1713725
- PAR ID:
- 10110598
- Date Published:
- Journal Name:
- ACM MobiHoc
- Page Range / eLocation ID:
- 221 to 230
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Age of information (AoI) is a recently proposed metric for measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
measuring information freshness. AoI measures the time that elapsed since the last received update was generated. We consider the problem of minimizing average and peak AoI in wireless networks under general interference constraints. When fresh information is always available for transmission, we show that a stationary scheduling policy is peak age optimal. We also prove that this policy achieves average age that is within a factor of two of the optimal average age. In the case where fresh information is not always available, and packet/information generation rate has to be controlled along with scheduling links for transmission, we prove an important separation principle: the optimal scheduling policy can be designed assuming fresh information, and independently, the packet generation rate control can be done by ignoring interference. Peak and average AoI for discrete time G/Ber/1 queue is analyzed for the first time, which may be of independent interest.more » « less
-
With the rapid advance of information technology, network systems have become increasingly complex and hence the underlying system dynamics are often unknown or difficult to characterize. Finding a good network control policy is of significant importance to achieve desirable network performance (e.g., high throughput or low delay). In this work, we consider using model-based reinforcement learning (RL) to learn the optimal control policy for queueing networks so that the average job delay (or equivalently the average queue backlog) is minimized. Traditional approaches in RL, however, cannot handle the unbounded state spaces of the network control problem. To overcome this difficulty, we propose a new algorithm, called RL for Queueing Networks (RL-QN), which applies model-based RL methods over a finite subset of the state space while applying a known stabilizing policy for the rest of the states. We establish that the average queue backlog under RL-QN with an appropriately constructed subset can be arbitrarily close to the optimal result. We evaluate RL-QN in dynamic server allocation, routing, and switching problems. Simulation results show that RL-QN minimizes the average queue backlog effectively.more » « less
-
null (Ed.)We consider an LTE downlink scheduling system where a base station allocates resource blocks (RBs) to users running delay-sensitive applications. We aim to find a scheduling policy that minimizes the queuing delay experienced by the users. We formulate this problem as a Markov Decision Process (MDP) that integrates the channel quality indicator (CQI) of each user in each RB, and queue status of each user. To solve this complex problem involving high dimensional state and action spaces, we propose a Deep Reinforcement Learning based scheduling framework that utilizes the Deep Deterministic Policy Gradient (DDPG) algorithm to minimize the queuing delay experienced by the users. Our extensive experiments demonstrate that our approach outperforms state-of-the-art benchmarks in terms of average throughput, queuing delay, and fairness, achieving up to 55% lower queuing delay than the best benchmark.more » « less