Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We consider a wireless network with a base station serving multiple traffic streams to different destinations. Packets from each stream arrive to the base station according to a stochastic process and are enqueued in a separate (per stream) queue. The queueing discipline controls which packet within each queue is available for transmission. The base station decides, at every time t, which stream to serve to the corresponding destination. The goal of scheduling decisions is to keep the information at the destinations fresh. Information freshness is captured by the Age of Information (AoI) metric. In this paper, we derive a lower bound on the AoI performance achievable by any given network operating under any queueing discipline. Then, we consider three common queueing disciplines and develop both an Optimal Stationary Randomized policy and a Max-Weight policy under each discipline. Our approach allows us to evaluate the combined impact of the stochastic arrivals, queueing discipline and scheduling policy on AoI. We evaluate the AoI performance both analytically and using simulations. Numerical results show that the performance of the Max-Weight policy is close to the analytical lower bound.more » « less
-
We consider the problem of timely exchange of updates between a central station and a set of ground terminals V , via a mobile agent that traverses across the ground terminals along a mobility graph G = (V;E). We design the trajectory of the mobile agent to minimize peak and average age of information (AoI), two newly proposed metrics for measuring timeliness of information. We consider randomized trajectories, in which the mobile agent travels from terminal i to terminal j with probability Pi;j . For the information gathering problem, we show that a randomized trajectory is peak age optimal and factor-8H average age optimal, where H is the mixing time of the randomized trajectory on the mobility graph G. We also show that the average age minimization problem is NP-hard. For the information dissemination problem, we prove that the same randomized trajectory is factor-O(H) peak and average age optimal. Moreover, we propose an age-based trajectory, which utilizes information about current age at terminals, and show that it is factor-2 average age optimal in a symmetric setting.more » « less