skip to main content


Title: Spatially Aware Ensemble-Based Learning to Predict Weather-Related Outages in Transmission
This paper describes the implementation of a prediction model for real-time assessment of weather related outages in the electric transmission system. The network data and historical outages are correlated with a variety of weather sources in order to construct the knowledge extraction platform for accurate outage probability prediction. An extension of the logistic regression prediction model that embeds the spatial configuration of the network was used for prediction. The results show that the developed model manifests high accuracy and is able to differentiate an outage area from the rest of the network in 1 to 3 hours before the outage. The prediction model is integrated inside a weather testbed for real-time mapping of network outage probabilities based on incoming weather forecast.  more » « less
Award ID(s):
1636772
NSF-PAR ID:
10110812
Author(s) / Creator(s):
Date Published:
Journal Name:
The Hawaii International Conference on System Sciences – HICSS, Maui, Hawaii, January 2019
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Power outage prediction is important for planning electric power system response, restoration, and maintenance efforts. It is important for utility managers to understand the impact of outages on the local distribution infrastructure in order to develop appropriate maintenance and resilience measures. Power outage prediction models in literature are often limited in scope, typically tailored to model extreme weather related outage events. While these models are sufficient in predicting widespread outages from adverse weather events, they may fail to capture more frequent, non-weather related outages (NWO). In this study, we explore time series models of NWO by incorporating state-of-the-art techniques that leverage the Prophet model in Bayesian optimization and hierarchical forecasting. After defining a robust metric for NWO (non-weather outage count index, NWOCI), time series forecasting models that leverage advanced preprocessing and forecasting techniques in Kats and Prophet, respectively, were built and tested using six years of daily state- and county-level outage data in Massachusetts (MA). We develop a Prophet model with Bayesian True Parzen Estimator optimization (Prophet-TPE) using state-level outage data and a hierarchical Prophet-Bottom-Up model using county-level data. We find that these forecasting models outperform other Bayesian and hierarchical model combinations of Prophet and Seasonal Autoregressive Integrated Moving Average (SARIMA) models in predicting NWOCI at both county and state levels. Our time series trend decomposition reveals a concerning trend in the growth of NWO in MA. We conclude with a discussion of these observations and possible recommendations for mitigating NWO. 
    more » « less
  2. The paper introduces an optimal maintenance scheduler based on predictive assessment of risk of outage and equipment failure in distribution networks. The variety of severe weather conditions are observed and their impact on the network components is quantified. The equipment deterioration and failure rates are observed continuously across the space and time using heterogeneous data. The risk of weather-related outages for each component is generated in real-time, and can be extracted at multiple temporal and spatial scales depending on the application of interest. The optimal maintenance scheduling that minimizes the system risk while maintaining the economic investment limits is developed. The benefits of the framework are presented using a distribution network asset management example. 
    more » « less
  3. Installation of line surge arresters on transmission towers can significantly improve the line lightning performance. However, it is not always economically beneficial to install the line surge arresters on every tower in the network. This paper proposes the method for optimal placement of line surge arresters that minimizes the overall risk of lightning related outages and disturbances, while staying within the required budgetary limits. A variety of data sources was used: utility asset management, geographical information system, lightning detection network, historical weather and weather forecasts, vegetation and soil properties. The proposed solution is focused on predicting the risk of transmission line insulators experiencing an insulation breakdown due to the accumulated deterioration over time and an instant impact of a given lightning strike. The linear regression prediction-based algorithm observes the impact of various historical events on each individual component. In addition, the spatial distribution of various impacts is used to enhance the predictive performance of the algorithm. The developed method is fully automated, making it a unique large scale automated decision-making risk model for real-time management of the transmission line lightning protection performance. Based on the observation of risk tracking and prediction, the zones with highest probability of lightning caused outages are identified. Then the optimization algorithm is applied to determine the best placement strategy for the limited number of line surge arresters that would provide the highest reduction in the overall risk for the network. Economic factors are taken into account in order to develop installation schedule that would enable economically efficient management of line lightning protection performance for utilities 
    more » « less
  4. Abstract Animal-related outages (AROs) are a prevalent form of outages in electrical distribution systems. Animal-infrastructure interactions vary across species and regions, underlining the need to study the animal-outage relationship in more species and diverse systems. Animal activity has been an indicator of reliability in the electrical grid system by describing temporal patterns in AROs. However, these ARO models have been limited by a lack of available species activity data, instead approximating activity based on seasonal patterns and weather dependency in ARO records and characteristics of broad taxonomic groups, e.g. squirrels. We highlight available resources to fill the ecological data gap limiting joint analyses between ecology and energy sectors. Species distribution modeling (SDM), a common technique to model the distribution of a species across geographic space and time, paired with community science data, provided us with species-specific estimates of activity to analyze alongside spatio-temporal patterns of ARO severity. We use SDM estimates of activity for multiple outage-prone bird species to examine whether diverse animal activity patterns were important predictors of ARO severity by capturing existing variation within animal-outage relationships. Low dimensional representation and single patterns of bird activity were important predictors of ARO severity in Massachusetts. However, both patterns of summer migrants and overwintering species showed some degree of importance, indicating that multiple biological patterns could be considered in future models of grid reliability. Making the best available resources from quantitative ecology known to outside disciplines can allow for more interdisciplinary data analyses between ecological and non-ecological systems. This can result in further opportunities to examine and validate the relationships between animal activity and grid reliability in diverse systems. 
    more » « less
  5. During major power system disturbances, when multiple component outages occur in rapid succession, it becomes crucial to quickly identify the transmission interconnections that have limited power transfer capability. Understanding the impact of an outage on these critical interconnections (called saturated cut-sets) is important for enhancing situational awareness and taking correct actions. This paper proposes a new graph theoretic approach for analyzing whether a contingency will create a saturated cut-set in a meshed power network. A novel feature of the proposed algorithm is that it lowers the solution time significantly making the approach viable for real-time operations. It also indicates the minimum amount by which the power transfer through the critical interconnections should be reduced so that post-contingency saturation does not occur. Robustness of the proposed algorithm for enhanced situational awareness is demonstrated using the IEEE-118 bus system as well as a 17,000+ bus model of the Western Interconnection (WI). Comparisons made with different approaches for power system vulnerability assessment prove the utility of the proposed scheme for aiding power system operations during extreme exigencies. 
    more » « less