The quality of the processed products in CNC machining centers is a critical factor in manufacturing equipment. The anomaly detection and predictive maintenance functions are essential for improving efficiency and reducing time and costs. This study aims to strengthen service competitiveness by reducing quality assurance costs and implementing AI-based predictive maintenance services, as well as establishing a predictive maintenance system for CNC manufacturing equipment. The proposed system integrates preventive maintenance, time-based maintenance, and condition-based maintenance strategies. Using continuous learning based on long short-term memory (LSTM), the system enables anomaly detection, failure prediction, cause analysis, root cause identification, remaining useful life (RUL) prediction, and optimal maintenance timing decisions. In addition, this study focuses on roller-cutting devices that are essential in packaging processes, such as food, pharmaceutical, and cosmetic production. When rolling pins are machining with CNC equipment, a sensor system is installed to collect acoustic data, analyze failure patterns, and apply RUL prediction algorithms. The AI-based predictive maintenance system developed ensures the reliability and operational efficiency of CNC equipment, while also laying the foundation for a smart factory monitoring platform, thus enhancing competitiveness in intelligent manufacturing environments.
more »
« less
“Optimized Asset Management in Distribution Systems Based on Predictive Risk Analysis
The paper introduces an optimal maintenance scheduler based on predictive assessment of risk of outage and equipment failure in distribution networks. The variety of severe weather conditions are observed and their impact on the network components is quantified. The equipment deterioration and failure rates are observed continuously across the space and time using heterogeneous data. The risk of weather-related outages for each component is generated in real-time, and can be extracted at multiple temporal and spatial scales depending on the application of interest. The optimal maintenance scheduling that minimizes the system risk while maintaining the economic investment limits is developed. The benefits of the framework are presented using a distribution network asset management example.
more »
« less
- Award ID(s):
- 1636772
- PAR ID:
- 10110810
- Date Published:
- Journal Name:
- Energies
- ISSN:
- 1996-1073
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Airside economizers lower the operating cost of data centers by reducing or eliminating mechanical cooling. It, however, increases the risk of reliability degradation of information technology (IT) equipment due to contaminants. IT Equipment manufacturers have tested equipment performance and guarantee the reliability of their equipment in environments within ISA 71.04-2013 severity level G1 and the ASHRAE recommended temperature-relative humidity (RH) envelope. IT Equipment manufacturers require data center operators to meet all the specified conditions consistently before fulfilling warranty on equipment failure. To determine the reliability of electronic hardware in higher severity conditions, field data obtained from real data centers are required. In this study, a corrosion classification coupon experiment as per ISA 71.04-2013 was performed to determine the severity level of a research data center (RDC) located in an industrial area of hot and humid Dallas. The temperature-RH excursions were analyzed based on time series and weather data bin analysis using trend data for the duration of operation. After some period, a failure was recorded on two power distribution units (PDUs) located in the hot aisle. The damaged hardware and other hardware were evaluated, and cumulative corrosion damage study was carried out. The hypothetical estimation of the end of life of components is provided to determine free air-cooling hours for the site. There was no failure of even a single server operated with fresh air-cooling shows that using evaporative/free air cooling is not detrimental to IT equipment reliability. This study, however, must be repeated in other geographical locations to determine if the contamination effect is location dependent.more » « less
-
A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the energy interruption impacts. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely risk mitigation.more » « less
-
A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the status of the grid. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely tracking of the operating condition.more » « less
-
Ellis, K; Ferrell, W.; Knapp, J. (Ed.)Failure identification and prediction in a power system are essential components that are prerequisites for optimizing the maintenance of the system. The incidences of power system failures have increased dramatically in recent times due to the uncertainties inherent in the advent of both man-made and natural disasters. This problem is further exacerbated due to the increasing demand for higher operational efficiency in power systems. Currently, there is a paucity of studies that predict and identify failure in a distribution power system. In this paper, we propose an integrated methodology for selecting the optimal maintenance plan based on predicting and identifying failure modes with the aid of Hidden Markov Models (HMM) and a probabilistic decision-making tool. While the model parameters of previous studies were determined utilizing observable prior knowledge, the use of HMM offers a different approach especially in the absence of such observable prior distributions. Thus, we determine the status of health of a power system by using an HMM to capture the relationship between unobservable degradation state and observed parameters. The preliminary outcome is instructive for the management of power systems especially in response to fortifying the system against aging and degradation.more » « less
An official website of the United States government

