skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-driven decision making in power systems with probabilistic guarantees: Theory and applications of chance-constrained optimization
Uncertainties from deepening penetration of renewable energy resources have posed critical challenges to the secure and reliable operations of future electric grids. Among various approaches for decision making in uncertain environments, this paper focuses on chance-constrained optimization, which provides explicit probabilistic guarantees on the feasibility of optimal solutions. Although quite a few methods have been proposed to solve chance-constrained optimization problems, there is a lack of comprehensive review and comparative analysis of the proposed methods. We first review three categories of existing methods to chance-constrained optimization: (1) scenario approach; (2) sample average approximation; and (3) robust optimization based methods. Data-driven methods, which are not constrained by any particular distributions of the underlying uncertainties, are of particular interest. Key results of the analytical reformulation approach for specific distributions are briefly discussed. We then provide a comprehensive review on the applications of chance-constrained optimization in power systems. Finally, this paper provides a critical comparison of existing methods based on numerical simulations, which are conducted on standard power system test cases.  more » « less
Award ID(s):
1636772
PAR ID:
10110826
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual reviews in control
Volume:
47
ISSN:
1367-5788
Page Range / eLocation ID:
341-363
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The focus of this paper is on the design of input shapers for systems with uncertainties in the parameters of the vibratory modes which need to be attenuated. A probabilistic framework is proposed for the design of the robust input shaper, when the uncertain modal parameters are characterized by probability density functions. A convex chance constrained optimization problem is posed to determine the parameters of input shapers (time-delay filter) which can accommodate the users acceptable risk levels for a prescribed residual energy threshold. Robust input shapers are developed for various compact support distributions to illustrate the ability of the proposed formulation to synthesize input shapers which can satisfy a residual energy threshold with a given risk level. This problem formulation can conceivably reduce the conservative nature of worst case controllers which have to ensure that all realizations of the uncertain system have to satisfy a prescribed performance index. The chance constrained input shaper is designed for a spring-mass-dashpot system with three different distributions for the uncertain spring stiffness. Results provide encouragement for the extension of the proposed approach to multi-dimensional and multi-model uncertainties. 
    more » « less
  2. This paper proposes a deep sigma point processes (DSPP)-assisted chance-constrained power system transient stability preventive control method to deal with uncertain renewable energy and loads-induced stability risk. The traditional transient stability-constrained preventive control is reformulated as a chance-constrained optimization problem. To deal with the computational bottleneck of the time-domain simulation-based probabilistic transient stability assessment, the DSPP is developed. DSPP is a parametric Bayesian approach that allows us to predict system transient stability with high computational efficiency while accurately quantifying the confidence intervals of the predictions that can be used to inform system instability risk. To this end, with a given preset confidence probability, we embed DSPP into the primal dual interior point method to help solve the chance-constrained preventive control problem, where the corresponding Jacobian and Hessian matrices are derived. Comparison results with other existing methods show that the proposed method can significantly speed up preventive control while maintaining high accuracy and convergence. 
    more » « less
  3. This paper presents a new power grid network design and optimization technique that considers the new EM immortality constraint due to EM void saturation volume for multi-segment interconnects. Void may grow to its saturation volume without changing the wire resistance significantly. However, this phenomenon was ignored in existing EM-aware optimization methods. By considering this new effect, we can remove more conservativeness in the EM-aware on-chip power grid design. Along with recently proposed nucleation phase immortality constraint for multi-segment wires, we show that both EM immortality constraints can be naturally integrated into the existing programming based power grid optimization framework. To further mitigate the overly conservative problem of existing immortality-constrained optimization methods, we further explore two strategies: first we size up failed wires to meet one of immorality conditions subject to design rules; second, we consider the EM-induced aging effects on power supply networks for a targeted lifetime, which allows some short-lifetime wires to fail and optimizes the rest of the wires. Numerical results on a number of IBM and self-generated power supply networks demonstrate that the new method can reduce more power grid area compared to the existing EM-immortality constrained optimizations. Furthermore, the new method can optimize power grids with nucleated wires, which would not be possible with the existing methods. 
    more » « less
  4. null (Ed.)
    A method is developed for transforming chance constrained optimization problems to a form numerically solvable. The transformation is accomplished by reformulating the chance constraints as nonlinear constraints using a method that combines the previously developed Split-Bernstein approximation and kernel density estimator (KDE) methods. The Split-Bernstein approximation in a particular form is a biased kernel density estimator. The bias of this kernel leads to a nonlinear approximation that does not violate the bounds of the original chance constraint. The method of applying biased KDEs to reformulate chance constraints as nonlinear constraints transforms the chance constrained optimization problem to a deterministic optimization problems that retains key properties of the chance constrained optimization problem and can be solved numerically. This method can be applied to chance constrained optimal control problems. As a result, the Split-Bernstein and Gaussian kernels are applied to a chance constrained optimal control problem and the results are compared. 
    more » « less
  5. Dosage schedule of the Proton Pump Inhibitors (PPIs) is critical for gastric acid disorder treatment. In this paper, we develop a constrained optimization based approach for scheduling the PPIs dosage. In particular, we exploit a mathematical prediction model describing the gastric acid secretion, and use it within the optimization algorithm to predict the acid level. The dosage of the PPIs which is used to enforce acid level constraints is computed by solving a constrained optimization problem. Simulation results show that the proposed approach can successfully suppress the gastric acid level with less PPIs intake compared with the conventional fixed PPIs dosage regimen, which may reduce the long-term side effects of the PPIs. 
    more » « less