skip to main content


Title: Resiliency Assessment in Distribution Networks Using GIS Based Predictive Risk Analytics
A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the status of the grid. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely tracking of the operating condition.  more » « less
Award ID(s):
1636772
NSF-PAR ID:
10110827
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the energy interruption impacts. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely risk mitigation. 
    more » « less
  2. Background Shift workers are at high risk of developing sleep disorders such as shift worker sleep disorder or chronic insomnia. Cognitive behavioral therapy (CBT) is the first-line treatment for insomnia, and emerging evidence shows that internet-based CBT is highly effective with additional features such as continuous tracking and personalization. However, there are limited studies on internet-based CBT for shift workers with sleep disorders. Objective This study aimed to evaluate the impact of a 4-week, physician-assisted, internet-delivered CBT program incorporating machine learning–based well-being prediction on the sleep duration of shift workers at high risk of sleep disorders. We evaluated these outcomes using an internet-delivered CBT app and fitness trackers in the intensive care unit. Methods A convenience sample of 61 shift workers (mean age 32.9, SD 8.3 years) from the intensive care unit or emergency department participated in the study. Eligible participants were on a 3-shift schedule and had a Pittsburgh Sleep Quality Index score ≥5. The study comprised a 1-week baseline period, followed by a 4-week intervention period. Before the study, the participants completed questionnaires regarding the subjective evaluation of sleep, burnout syndrome, and mental health. Participants were asked to wear a commercial fitness tracker to track their daily activities, heart rate, and sleep for 5 weeks. The internet-delivered CBT program included well-being prediction, activity and sleep chart, and sleep advice. A job-based multitask and multilabel convolutional neural network–based model was used for well-being prediction. Participant-specific sleep advice was provided by sleep physicians based on daily surveys and fitness tracker data. The primary end point of this study was sleep duration. For continuous measurements (sleep duration, steps, etc), the mean baseline and week-4 intervention data were compared. The 2-tailed paired t test or Wilcoxon signed rank test was performed depending on the distribution of the data. Results In the fourth week of intervention, the mean daily sleep duration for 7 days (6.06, SD 1.30 hours) showed a statistically significant increase compared with the baseline (5.54, SD 1.36 hours; P=.02). Subjective sleep quality, as measured by the Pittsburgh Sleep Quality Index, also showed statistically significant improvement from baseline (9.10) to after the intervention (7.84; P=.001). However, no significant improvement was found in the subjective well-being scores (all P>.05). Feature importance analysis for all 45 variables in the prediction model showed that sleep duration had the highest importance. Conclusions The physician-assisted internet-delivered CBT program targeting shift workers with a high risk of sleep disorders showed a statistically significant increase in sleep duration as measured by wearable sensors along with subjective sleep quality. This study shows that sleep improvement programs using an app and wearable sensors are feasible and may play an important role in preventing shift work–related sleep disorders. International Registered Report Identifier (IRRID) RR2-10.2196/24799. 
    more » « less
  3. We consider the problem of learning the underlying structure of a general discrete pairwise Markov network. Existing approaches that rely on empirical risk minimization may perform poorly in settings with noisy or scarce data. To overcome these limitations, we propose a computationally efficient and robust learning method for this problem with near-optimal sample complexities. Our approach builds upon distributionally robust optimization (DRO) and maximum conditional log-likelihood. The proposed DRO estimator minimizes the worst-case risk over an ambiguity set of adversarial distributions within bounded transport cost or f-divergence of the empirical data distribution. We show that the primal minimax learning problem can be efficiently solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we derive near-optimal sample complexities matching existing results. Extensive empirical evidence with different corruption models corroborates the effectiveness of the proposed methods. 
    more » « less
  4. Installation of line surge arresters on transmission towers can significantly improve the line lightning performance. However, it is not always economically beneficial to install the line surge arresters on every tower in the network. This paper proposes the method for optimal placement of line surge arresters that minimizes the overall risk of lightning related outages and disturbances, while staying within the required budgetary limits. A variety of data sources was used: utility asset management, geographical information system, lightning detection network, historical weather and weather forecasts, vegetation and soil properties. The proposed solution is focused on predicting the risk of transmission line insulators experiencing an insulation breakdown due to the accumulated deterioration over time and an instant impact of a given lightning strike. The linear regression prediction-based algorithm observes the impact of various historical events on each individual component. In addition, the spatial distribution of various impacts is used to enhance the predictive performance of the algorithm. The developed method is fully automated, making it a unique large scale automated decision-making risk model for real-time management of the transmission line lightning protection performance. Based on the observation of risk tracking and prediction, the zones with highest probability of lightning caused outages are identified. Then the optimization algorithm is applied to determine the best placement strategy for the limited number of line surge arresters that would provide the highest reduction in the overall risk for the network. Economic factors are taken into account in order to develop installation schedule that would enable economically efficient management of line lightning protection performance for utilities 
    more » « less
  5. Hill, Alison L. (Ed.)
    The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks. 
    more » « less