skip to main content


Title: Resiliency Assessment in Distribution Networks Using GIS Based Predictive Risk Analytics,”
A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the energy interruption impacts. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely risk mitigation.  more » « less
Award ID(s):
1636772
NSF-PAR ID:
10110815
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE PES 2018 Transmission and Distribution Latin America (T&D LA), Peru, Sep. 18-21, 2018.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A new predictive risk-based framework is proposed to increase power distribution network resiliency by improving operator understanding of the status of the grid. This paper expresses the risk assessment as the correlation between likelihood and impact. The likelihood is derived from the combination of Naive Bayes learning and Jenks natural breaks classifier. The analytics included in a GIS platform fuse together a massive amount of data from outage recordings and weather historical databases in just one semantic parameter known as failure probability. The financial impact is determined by a time series-based formulation that supports spatiotemporal data from fault management events and customer interruption cost. Results offer prediction of hourly risk levels and monthly accumulated risk for each feeder section of a distribution network allowing for timely tracking of the operating condition. 
    more » « less
  2. Abstract

    Critical infrastructure networks enable social behavior, economic productivity, and the way of life of communities. Disruptions to these cyber–physical–social networks highlight their importance. Recent disruptions caused by natural phenomena, including Hurricanes Harvey and Irma in 2017, have particularly demonstrated the importance of functioning electric power networks. Assessing the economic impact (EI) of electricity outages after a service disruption is a challenging task, particularly when interruption costs vary by the type of electric power use (e.g., residential, commercial, industrial). In contrast with most of the literature, this work proposes an approach to spatially evaluate EIs of disruptions to particular components of the electric power network, thus enabling resilience‐based preparedness planning from economic and community perspectives. Our contribution is a mix‐method approach that combines EI evaluation, component importance analysis, and GIS visualization for decision making.

    We integrate geographic information systems and an economic evaluation of sporadic electric power outages to provide a tool to assist with prioritizing restoration of power in commercial areas that have the largest impact. By making use of public data describing commercial market value, gross domestic product, and electric area distribution, this article proposes a method to evaluate the EI experienced by commercial districts. A geospatial visualization is presented to observe and compare the areas that are more vulnerable in terms of EI based on the areas covered by each distribution substation. Additionally, a heat map is developed to observe the behavior of disrupted substations to determine the important component exhibiting the highest EI. The proposed resilience analytics approach is applied to analyze outages of substations in the boroughs of New York City.

     
    more » « less
  3. Abstract

    Networks like those of healthcare infrastructure have been a primary target of cyberattacks for over a decade. From just a single cyberattack, a healthcare facility would expect to see millions of dollars in losses from legal fines, business interruption, and loss of revenue. As more medical devices become interconnected, more cyber vulnerabilities emerge, resulting in more potential exploitation that may disrupt patient care and give rise to catastrophic financial losses. In this paper, we propose a structural model of an aggregate loss distribution across multiple cyberattacks on a prototypical hospital network. Modeled as a mixed random graph, the hospital network consists of various patient‐monitoring devices and medical imaging equipment as random nodes to account for the variable occupancy of patient rooms and availability of imaging equipment that are connected by bidirectional edges to fixed hospital and radiological information systems. Our framework accounts for the documented cyber vulnerabilities of a hospital's trusted internal network of its major medical assets. To our knowledge, there exist no other models of an aggregate loss distribution for cyber risk in this setting. We contextualize the problem in the probabilistic graph‐theoretical framework using a percolation model and combinatorial techniques to compute the mean and variance of the loss distribution for a mixed random network with associated random costs that can be useful for healthcare administrators and cybersecurity professionals to improve cybersecurity management strategies. By characterizing this distribution, we allow for the further utility of pricing cyber risk.

     
    more » « less
  4. We consider the problem of learning the underlying structure of a general discrete pairwise Markov network. Existing approaches that rely on empirical risk minimization may perform poorly in settings with noisy or scarce data. To overcome these limitations, we propose a computationally efficient and robust learning method for this problem with near-optimal sample complexities. Our approach builds upon distributionally robust optimization (DRO) and maximum conditional log-likelihood. The proposed DRO estimator minimizes the worst-case risk over an ambiguity set of adversarial distributions within bounded transport cost or f-divergence of the empirical data distribution. We show that the primal minimax learning problem can be efficiently solved by leveraging sufficient statistics and greedy maximization in the ostensibly intractable dual formulation. Based on DRO’s approximation to Lipschitz and variance regularization, we derive near-optimal sample complexities matching existing results. Extensive empirical evidence with different corruption models corroborates the effectiveness of the proposed methods. 
    more » « less
  5. Background Shift workers are at high risk of developing sleep disorders such as shift worker sleep disorder or chronic insomnia. Cognitive behavioral therapy (CBT) is the first-line treatment for insomnia, and emerging evidence shows that internet-based CBT is highly effective with additional features such as continuous tracking and personalization. However, there are limited studies on internet-based CBT for shift workers with sleep disorders. Objective This study aimed to evaluate the impact of a 4-week, physician-assisted, internet-delivered CBT program incorporating machine learning–based well-being prediction on the sleep duration of shift workers at high risk of sleep disorders. We evaluated these outcomes using an internet-delivered CBT app and fitness trackers in the intensive care unit. Methods A convenience sample of 61 shift workers (mean age 32.9, SD 8.3 years) from the intensive care unit or emergency department participated in the study. Eligible participants were on a 3-shift schedule and had a Pittsburgh Sleep Quality Index score ≥5. The study comprised a 1-week baseline period, followed by a 4-week intervention period. Before the study, the participants completed questionnaires regarding the subjective evaluation of sleep, burnout syndrome, and mental health. Participants were asked to wear a commercial fitness tracker to track their daily activities, heart rate, and sleep for 5 weeks. The internet-delivered CBT program included well-being prediction, activity and sleep chart, and sleep advice. A job-based multitask and multilabel convolutional neural network–based model was used for well-being prediction. Participant-specific sleep advice was provided by sleep physicians based on daily surveys and fitness tracker data. The primary end point of this study was sleep duration. For continuous measurements (sleep duration, steps, etc), the mean baseline and week-4 intervention data were compared. The 2-tailed paired t test or Wilcoxon signed rank test was performed depending on the distribution of the data. Results In the fourth week of intervention, the mean daily sleep duration for 7 days (6.06, SD 1.30 hours) showed a statistically significant increase compared with the baseline (5.54, SD 1.36 hours; P=.02). Subjective sleep quality, as measured by the Pittsburgh Sleep Quality Index, also showed statistically significant improvement from baseline (9.10) to after the intervention (7.84; P=.001). However, no significant improvement was found in the subjective well-being scores (all P>.05). Feature importance analysis for all 45 variables in the prediction model showed that sleep duration had the highest importance. Conclusions The physician-assisted internet-delivered CBT program targeting shift workers with a high risk of sleep disorders showed a statistically significant increase in sleep duration as measured by wearable sensors along with subjective sleep quality. This study shows that sleep improvement programs using an app and wearable sensors are feasible and may play an important role in preventing shift work–related sleep disorders. International Registered Report Identifier (IRRID) RR2-10.2196/24799. 
    more » « less