skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Efficient Development of Continuum/Compliant Planar Linkage Mechanisms
This paper presents a method to develop continuum/ compliant mechanisms based on planar bar-node linkage precursors. The method takes as inputs the initial node positions and connectivity data of a given bar-node linkage and converts it into a continuum/compliant mechanism having the same targeted motion. The line bars of the given bar-node linkage are thickened into trapezoidal planar members and the nodes are thickened by introducing fillets at each intersection of bars. The thicknesses of the bars and the shape parameters of the fillets in the continuum/compliant linkage are optimized to obtain the same targeted motion of the given bar-node linkage while keeping stresses below a maximum allowable value. Each design generated during the optimization process is evaluated using finite element analysis. The present method allows for the synthesis of mechanisms having the following advantages over conventional bar-node linkages: 1) They do not require complex ball or pin joints; 2) they can be readily 3-D printed and sizescaled, and 3) they can be optimized to decrease stresses below a maximum allowable value. Furthermore, the method uses a relatively small number of optimization variables (thicknesses of the members, shape-parameters of the fillets), making it an efficient alternative to more complex and computationally intensive methods for synthesizing compliant mechanisms such as those incorporating topology optimization.  more » « less
Award ID(s):
1636017
PAR ID:
10110830
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper presents a design methodology for mechanisms consisting of a single continuous structure, continuum mechanisms, that blends the kinematic synthesis of rigid-body mechanisms with topology optimization for compliant mechanisms. Rather than start with a generic structure that is shaped to achieve a required force deflection task for a compliant mechanism, our approach shapes the initial structure based on kinematic synthesis of a rigid body mechanism for the required movement, then the structure is shaped using Finite Element Analysis to achieve the required force deflection relationship. The result of this approach is a continuum mechanism with the same workpiece movement as the rigid link mechanism when actuated. An example illustrates the design process to obtain an eight-bar linkage that guides its workpiece in straight-line rectilinear movement. We show that the resulting continuum mechanism provides the desired rectilinear movement. A 210 mm physical model machined from Nylon-6 is shown to achieve 21.5mm rectilinear movement with no perceived deviation from a straight-line. 
    more » « less
  2. null (Ed.)
    Abstract Cognate linkages are mechanisms that share the same motion, a property that can be useful in mechanical design. This article treats planar curve cognates, that is, planar mechanisms with rotational joints whose coupler points draw the same curve, as well as coupler cognates and timed curve cognates. The purpose of this article is to develop a straightforward method based solely on kinematic equations to construct cognates. The approach computes cognates that arise from permuting link rotations and is shown to reproduce all of the known results for cognates of four-bar and six-bar linkages. This approach is then used to construct a cognate of an eight-bar and a ten-bar linkage. 
    more » « less
  3. In this study, a novel human-in-the-loop design method using a genetic algorithm (GA) is presented to design a low-cost and easy-to-use four-bar linkage medical device for upper limb muscle rehabilitation. The four-bar linkage can generate a variety of coupler point trajectories by using different link lengths. For this medical device, patients grab the coupler point handle and rotate the arm along the designed coupler point trajectory to exercise upper limb muscles. The design procedures include three basic steps: First, for a set of link lengths, a complete coupler point trajectory is generated from four-bar linkage kinematics; second, optimization-based motion prediction is utilized to predict arm motion (joint angle profiles) subjected to hand grasping and joint angle limit constraints; third, the predicted joint angles and given hand forces are imported into an OpenSim musculoskeletal arm model to calculate the muscle forces and activations by using the OpenSim static optimization. In the GA optimization formulation, the design variables are the four-bar link lengths. The objective function is to maximize a specific muscle’s exertion for a complete arm rotation. Finally, different four-bar configurations are designed for different muscle strength exercises. The proposed human-in-the-loop design approach successfully integrates GA with linkage kinematics, arm motion prediction, and OpenSim static optimization for four-bar linkage design for upper limb muscle strength rehabilitation. 
    more » « less
  4. Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman’s list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities. 
    more » « less
  5. Abstract This paper presents a novel real-time kinematic simulation algorithm for planar N-bar linkage mechanisms, both single- and multi-degrees-of-freedom, comprising revolute and/or prismatic joints and actuators. A key feature of this algorithm is a reinterpretation technique that transforms prismatic elements into a combination of revolute joint and links. This gives rise to a unified system of geometric constraints and a general-purpose solver which adapts to the complexity of the mechanism. The solver requires only two types of methods—fast dyadic decomposition and relatively slower optimization-based—to simulate all types of planar mechanisms. From an implementation point of view, this algorithm simplifies programming without requiring handling of different types of mechanisms. This versatile algorithm can handle serial, parallel, and hybrid planar mechanisms with varying degrees-of-freedom and joint types. Additionally, this paper presents an estimation of simulation time and structural complexity, shedding light on computational demands. Demonstrative examples showcase the practicality of this method. 
    more » « less