skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Graph Coloring Technique for Identifying The Minimum Number of Parts for Physical Integration in Product Design
The objective of this study is to develop a mathematical framework for determining the minimum number of parts required in a product to satisfy a list of functional requirements (FRs) given a set of connections between FRs. The problem is modeled as a graph coloring technique in which a graph G with n nodes (representing the FRs) and m edges (representing the connections between the FRs) is studied to determine the graph’s chromatic number c(G), which is the minimum number of colors required to properly color the graph. The chromatic number of the graph represents the minimum number of parts needed to satisfy the list of FRs. In addition, the study calculates the computational efficiency of the proposed algorithm. Several examples are provided to show the application of the proposed algorithm.  more » « less
Award ID(s):
1727190
PAR ID:
10110900
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE, Aug 18-21, 2019, Anaheim, CA.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract In this paper, we prove a tight minimum degree condition in general graphs for the existence of paths between two given endpoints whose lengths form a long arithmetic progression with common difference one or two. This allows us to obtain a number of exact and optimal results on cycle lengths in graphs of given minimum degree, connectivity or chromatic number. More precisely, we prove the following statements by a unified approach: 1. Every graph $$G$$ with minimum degree at least $k+1$ contains cycles of all even lengths modulo $$k$$; in addition, if $$G$$ is $$2$$-connected and non-bipartite, then it contains cycles of all lengths modulo $$k$$. 2. For all $$k\geq 3$$, every $$k$$-connected graph contains a cycle of length zero modulo $$k$$. 3. Every $$3$$-connected non-bipartite graph with minimum degree at least $k+1$ contains $$k$$ cycles of consecutive lengths. 4. Every graph with chromatic number at least $k+2$ contains $$k$$ cycles of consecutive lengths. The 1st statement is a conjecture of Thomassen, the 2nd is a conjecture of Dean, the 3rd is a tight answer to a question of Bondy and Vince, and the 4th is a conjecture of Sudakov and Verstraëte. All of the above results are best possible. 
    more » « less
  2. Aichholzer, Oswin; Wang, Haitao (Ed.)
    A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large. 
    more » « less
  3. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    For a given graph G, a hopset H with hopbound β and stretch α is a set of edges such that between every pair of vertices u and v, there is a path with at most β hops in G ∪ H that approximates the distance between u and v up to a multiplicative stretch of α. Hopsets have found a wide range of applications for distance-based problems in various computational models since the 90s. More recently, there has been significant interest in understanding these fundamental objects from an existential and structural perspective. But all of this work takes a worst-case (or existential) point of view: How many edges do we need to add to satisfy a given hopbound and stretch requirement for any input graph? We initiate the study of the natural optimization variant of this problem: given a specific graph instance, what is the minimum number of edges that satisfy the hopbound and stretch requirements? We give approximation algorithms for a generalized hopset problem which, when combined with known existential bounds, lead to different approximation guarantees for various regimes depending on hopbound, stretch, and directed vs. undirected inputs. We complement our upper bounds with a lower bound that implies Label Cover hardness for directed hopsets and shortcut sets with hopbound at least 3. 
    more » « less
  4. Etessami, Kousha; Feige, Uriel; Puppis, Gabriele (Ed.)
    In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition of the vertex set of G into k parts, while minimizing the number of edges that go between different parts of the partition. The problem is NP-complete, and admits a simple 3ⁿ⋅n^𝒪(1) time dynamic programming algorithm, which can be improved to a 2ⁿ⋅n^𝒪(1) time algorithm using the fast subset convolution framework by Björklund et al. [STOC'07]. In this paper we give an algorithm for Min k-Cut with running time 𝒪((2-ε)ⁿ), for ε > 10^{-50}. This is the first algorithm for Min k-Cut with running time 𝒪(cⁿ) for c < 2. 
    more » « less
  5. We consider the classical Minimum Crossing Number problem: given an n-vertex graph G, compute a drawing of G in the plane, while minimizing the number of crossings between the images of its edges. This is a fundamental and extensively studied problem, whose approximability status is widely open. In all currently known approximation algorithms, the approximation factor depends polynomially on Δ – the maximum vertex degree in G. The best current approximation algorithm achieves an O(n1/2−· (Δ·logn))-approximation, for a small fixed constant є, while the best negative result is APX-hardness, leaving a large gap in our understanding of this basic problem. In this paper we design a randomized O(2O((logn)7/8loglogn)·(Δ))-approximation algorithm for Minimum Crossing Number. This is the first approximation algorithm for the problem that achieves a subpolynomial in n approximation factor (albeit only in graphs whose maximum vertex degree is subpolynomial in n). In order to achieve this approximation factor, we design a new algorithm for a closely related problem called Crossing Number with Rotation System, in which, for every vertex v∈ V(G), the circular ordering, in which the images of the edges incident to v must enter the image of v in the drawing is fixed as part of input. Combining this result with the recent reduction of [Chuzhoy, Mahabadi, Tan ’20] immediately yields the improved approximation algorithm for Minimum Crossing Number. 
    more » « less