skip to main content


Title: Property impact of common linker segments in sequence-controlled polyesters
Heterogeneous “linkers” are incorporated into polymers for a number of reasons, most commonly to facilitate the coupling of the targeted backbone segments. Due to their inclusion in the backbone, these linkers have the potential to affect the overall properties of the copolymer, even when present in relatively low weight percentages. To characterize the degree of impact of some common linkers, a set of polymers that incorporate both degradable sequenced segments and linkers were synthesized and systematically examined. Seven sequence-controlled olefin containing ester macrocycles were prepared, each with a unique central moiety, including a five-carbon alkyl chain, diethylene glycol, a urea, a thioether, a triazole, a bioaromatic, and an extension of the ester sequence. The macrocycles were polymerized via ED-ROMP to yield seven polymers that vary only in the the linker segment. The properties of all polymers were compared to determine the relative dominance of the different linker types. The properties tested in the study included thermal behavior, mechanical characteristics, hydrolytic degradation and film qualities. The thermal and mechanical properties proved to be dependent primarily on the ability of the linker to promote interchain interactions, as well as the weight fraction of the linker, whereas the hydrolytic degradation was dominated by the relative hydrophobicity of the linker groups. In all cases, the linker identity was a significant contributer to the behavior.  more » « less
Award ID(s):
1709144 1625002
NSF-PAR ID:
10110921
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
10
Issue:
2
ISSN:
1759-9954
Page Range / eLocation ID:
244 to 252
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Poly(ester-amide)s (PEAs) have been prepared from (glucose-derived) β-methyl-δ-valerolactone (MVL) by reaction of MVL-derived diamidodiols with diacid chlorides in solution to form poly(ester-amide)s having alternating diester-diamide subunits. The PEAs formed by this method exhibit plastic properties and are of sufficiently high molecular weight to be tough, ductile materials (stress at break: 41–53 MPa, strain at break: 530–640%). The length of the methylene linker unit ( n = 1,2,3) between amide groups of the diamidodiols affects the Young's modulus; longer linkers reduce the stiffness of the materials. This allows tuning of the properties by judicious choice of precursors. MVL was also converted to a diacid chloride that was then used to prepare a PEA that is 76 wt% MVL-derived. The degradation rates of suspensions of these new PEAs in basic aqueous media were benchmarked and their instability in aqueous acid was also observed. NMR studies were used to detect the hydrolytic degradation products of both these PEAs as well as a structurally simpler analog. 
    more » « less
  2. ABSTRACT

    This work investigates effects of poly(γ‐butyrolactone) (PγBL) with different initiation and termination chain ends on five types of materials properties, including thermal stability, thermal transitions, thermal recyclability, hydrolytic degradation, and dynamic mechanical behavior. Four different chain‐end‐capped polymers with similar molecular weights, BnO‐[C(=O)(CH2)3O]n‐R, R = C(=O)Me, C(=O)CH=CH2, C(=O)Ph, and SiMe2CMe3, along with a series of uncapped polymers R′O‐[C(=O)(CH2)3O]n‐H (R′ = Bn, Ph2CHCH2) withMnranging from low (4.95 kg mol−1) to high (83.2 kg mol−1), have been synthesized. The termination chain end R showed a large effect on polymer decomposition temperature and hydrolytic degradation, relative to H. Overall, for those properties sensitive to the chain ends, chain‐end capping renders R‐protected linear PγBL behaving much like cyclic PγBL. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2018,56, 2271–2279

     
    more » « less
  3. null (Ed.)
    The development of tunable and degradable crosslinked-polyanhydride networks from renewably derived itaconic anhydrides and multifunctional thiols is presented. Itaconic acid was initially converted to ethyl itaconic anhydride and isoamyl itaconic anhydride via a two-step synthetic procedure on hundred-gram scale with minimal purification. Dinorbornene-functionalized derivatives were prepared via cycloaddition chemistry, and photoinitiated thiol–ene polymerization reactions were explored using commercially available tetra- and hexa-functional thiols, all using solvent-free syntheses. The thiol–ene reaction kinetics of different monomer compositions were characterized by real-time Fourier transform infrared (RT-FTIR) spectroscopy, with the norbornene functionalized derivatives exhibiting the highest reactivity towards thiol–ene photopolymerizations. The thermal and mechanical characteristics of the thermosets were analyzed and the viscoelastic behavior was investigated by dynamic mechanical analysis to understand the influence of the ester functionality and choice of crosslinker on the material properties. The anhydride backbone was found to be susceptible to controlled degradation under physiologically-(phosphate-buffered saline) and environmentally-relevant (artificial seawater) testing conditions over a period of 60 days at 50 °C. This work demonstrates that itaconic acid may be a useful feedstock in the generation of degradable polyanhydride networks via thiol–ene photopolymerization. 
    more » « less
  4. Sustainable gas barrier materials, such as polyglycolide, poly(l-lactide), and poly(ethylene 2,5-furandicarboxylate) are important alternatives to traditional plastics used for packaging where low gas permeability is beneficial. However, high degrees of crystallinity in these materials can lead to undesirably low material toughness. We report poly(ester–amide)s derived from glycolide and diamines exhibiting both high toughness and desirable gas barrier properties. These sustainable poly(ester–amide)s were synthesized from glycolide-derived diamidodiols and diacids. To understand the structure–property relationships of the poly(ester–amide)s, polymers with different numbers of methylene groups were compared with respect to thermal, mechanical, and gas barrier properties. As the number of methylene groups between ester groups increased in the even-numbered series, the melting temperature decreased and oxygen permeability increased. We also found that these polymers are readily degradable under neutral, acidic, and basic hydrolytic conditions. These high-performance poly(ester–amide)s are promising sustainable alternatives to conventional gas barrier materials. 
    more » « less
  5. Abstract

    We designed and developed a novel library of tyrosol‐derived poly(ester‐arylate)s that exhibit tunable chemical, thermal, mechanical, and degradative properties. To build the library, the diphenols 4‐hydroxyphenethyl 2‐(4‐hydroxyphenyl)acetate (HTy) and 4‐hydroxyphenethyl 3‐(4‐hydroxyphenyl)propanoate (DTy) are synthesized and subsequently polymerized with various diacids. Characterization of library members is performed in order to assess the impact of chemical structure on polymer properties. Specifically, the relative influence of diphenol pseudosymmetry versus asymmetry, diacid carbon chain length, and diacid bond rigidity on resulting properties is investigated. Diphenol choice greatly impacts resulting polymer thermal properties and processability. HTy‐containing polymers generally have lower melting temperatures compared to their DTy‐derived counterparts and are easier to quench in the amorphous phase. As a result, processing results in greater tunability for HTy‐derived polymers. One specific example was pHTy3, which increased its tensile modulus from 1 GPa to 3 GPa upon drawing. Diacid lengths and bond rigidity also significantly influence thermal, mechanical, and degradative properties. In all, members of this library can be synthesized efficiently, with high molecular weight and exhibit a wide range of properties, motivating future commercial translation.

     
    more » « less