skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DeapSECURE: Empowering Students for Data- and Compute-Intensive Research in Cybersecurity through Training
As the volume and sophistication of cyber-attacks grow, cybersecurity researchers, engineers and practitioners rely on advanced cyberinfrastructure (CI) techniques like big data and machine learning, as well as advanced CI platforms, e.g., cloud and high-performance computing (HPC) to assess cyber risks, identify and mitigate threats, and achieve defense in depth. There is a training gap where current cybersecurity curricula at many universities do not introduce advanced CI techniques to future cybersecurity workforce. At Old Dominion University (ODU), we are bridging this gap through an innovative training program named DeapSECURE (Data-Enabled Advanced Training Program for Cyber Security Research and Education). We developed six non-degree training modules to expose cybersecurity students to advanced CI platforms and techniques rooted in big data, machine learning, neural networks, and high-performance programming. Each workshop includes a lecture providing the motivation and context for a CI technique, which is then examined during a hands-on session. The modules are delivered through (1) monthly workshops for ODU students, and (2) summer institutes for students from other universities and Research Experiences for Undergraduates participants. Future plan for the training program includes an online continuous learning community as an extension to the workshops, and all learning materials available as open educational resources, which will facilitate widespread adoption, adaptations, and contributions. The project leverages existing partnerships to ensure broad participation and adoption of advanced CI techniques in the cybersecurity community. We employ a rigorous evaluation plan rooted in diverse metrics of success to improve the curriculum and demonstrate its effectiveness.  more » « less
Award ID(s):
1829771
PAR ID:
10111062
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of ACM Practical Experience in Advanced Research Computing Conference (PEARC’19)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. T3-CIDERS is a train-the-trainer program to increase the adoption of advanced cyberinfrastructure (CI) and data skills into the fabric of research and education in cybersecurity and cyber-related disciplines. T3-CIDERS trains faculty, researchers, and students as “future trainers” (FTs) with hands-on technical and instructional skills to enable more people to effectively leverage CI in cybersecurity. The program includes a series of technical pre-training modules, a weeklong summer institute, ongoing learning engagements conducted over an academic year; it culminates with the FTs conducting locally tailored CI-infused training events at their respective home institutions. Ultimately, T3-CIDERS aims to build a “CI+cybersecurity” community of practice as the cohort continues to practice and teach CI skills in their teaching and research activities. This paper describes the vision and implementation of T3-CIDERS with the first cohort starting in year 2024. Based on the lessons learned through the in-person cohorts, a fully online program will be developed to expand the reach of T3-CIDERS to a broader audience. T3-CIDERS responds to the need to close the CI and data skill gap to meet the increasing challenges in securing the digital world. 
    more » « less
  2. The Data-Enabled Advanced Computational Training Program for Cybersecurity Research and Education (DeapSECURE) is a non-degree training consisting of six modules covering a broad range of cyberinfrastructure techniques, including high performance computing, big data, machine learning and advanced cryptography, aimed at reducing the gap between current cybersecurity curricula and requirements needed for advanced research and industrial projects. Since 2020, these lesson modules have been updated and retooled to suit fully-online delivery. Hands-on activities were reformatted to accommodate self-paced learning. In this paper, we summarize the four years of the project comparing in-person and on-line only instruction methods as well as outlining lessons learned. The module content and hands-on materials are being released as open-source educational resources. We also indicate our future direction to scale up and increase adoption of the DeapSECURE training program to benefit cybersecurity research everywhere. 
    more » « less
  3. null (Ed.)
    The global Cybersecurity skill gap in 2020 is about 3.1 million and the Cybersecurity staff shortage is about 69%. Universities are waking up to the need for developing skills in Cybersecurity. Though many Universities offer a master’s degree in Cybersecurity, it is impractical to fill this huge demand for Cybersecurity through only graduate degree holders. After careful analysis, it has become evident that there is a gap in the curriculum as it relates to training for Cybersecurity concepts in foundational computing courses for students. To be more specific, there is relatively less focus on the infusion of Cybersecurity concepts in undergraduate computing courses and its impact on classroom practices. This paper serves to address this gap by providing an experience in infusing, teaching, and assessing Cybersecurity modules in various undergraduate computing courses that immerse students in real-world Cybersecurity practices through active learning. 
    more » « less
  4. The needs of cyberinfrastructure (CI) Users are different from those of CI Contributors. Typically, much of the training in advanced CI addresses developer topics such as MPI, OpenMP, CUDA and application profiling, leaving a gap in training for these users. To remedy this situation, we developed a new program: COMPrehensive Learning for end-users to Effectively utilize CyberinfraStructure (COMPLECS). COMPLECS focuses exclusively on helping CI Users acquire the skills and knowledge they need to efficiently accomplish their compute- and data-intensive research, covering topics such as parallel computing concepts, data management, batch computing, cybersecurity, HPC hardware overview, and high throughput computing. 
    more » « less
  5. Michigan Tech, West Shore Community College (WSCC), and Gogebic Community College (GCC) collaborate on the NSF ExLENT project aims to provide experiential learning opportunities in Mechatronics for a diverse STEM workforce. The program and its impacts are aligned with the regional economic needs of the Upper Peninsula and Northern Michigan areas. The emerging technology field of Mechatronics focuses on developing and implementing advanced automation for industrial applications. Thus, Mechatronics encompasses advanced fields, including robotics, Artificial Intelligence (AI), and cybersecurity. Though the demand for mechatronics expertise is growing, experiential workforce development opportunities in mechatronics are limited. This project will provide ExLENT participants with experiential opportunities through an online Mechatronics Education Portal (MEP), experiential Mechatronics Practice initiatives at Michigan Tech, and a Mechatronics Industry Pathways Rotation organized at WSCC and GCC. The MEP and MP modules will be focused on the five Mechatronics pillars of Robotics, Mechanics, Electronics/Controls, Cybersecurity, and Artificial Intelligence. This project will leverage partnerships among three universities, three nonprofit organizations, and nine regional industry collaborators. Comprehensive program evaluation will ensure that the project meets its objectives in improving interdisciplinary Mechatronics training through experiential learning opportunities, developing a flexible and comprehensive program to promote a diverse and inclusive STEM workforce, and facilitating sustainable collaboration amongst project partners centered around Mechatronic workforce preparation and placement. 
    more » « less