skip to main content


Title: Sequential and one-pot post-polymerization modification reactions of thiolactone-containing polymer brushes
Thiolactone chemistry has garnered significant attention as a powerful post-polymerization modification (PPM) route to mutlifunctional polymeric materials. Here, we apply this versatile chemistry to the fabrication of ultrathin, multifunctional polymer surfaces via aminolysis and thiol-mediated double modifications of thiolactone-containing polymer brushes. Polymer brush surfaces were synthesized via microwave-assisted surface-initiated polymerization of dl -homocysteine thiolactone acrylamide. Aminolysis and thiol-Michael double modifications of the thiolactone-functional brush were explored using both sequential and one-pot reactions with bromobenzyl amine and 1 H ,1 H -perfluoro- N -decyl acrylate. X-ray photoelectron spectroscopy and argon gas cluster ion sputter depth profiling enabled quantitative comparison of the sequential and one-pot PPM routes with regard to conversion and spatial distribution of functional groups immobilized throughout thickness of the brush. While one-pot conditions proved to be more effective in immobilizing the amine and acrylate within the brush, the sequential reaction enabled the fabrication of multifunctional, micropatterned brush surfaces using reactive microcontact printing.  more » « less
Award ID(s):
1726901 1449999
NSF-PAR ID:
10111532
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
ISSN:
1759-9954
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Post-polymerization modification (PPM) has been broadly employed to achieve functional polymer brush surfaces via immobilization of functional moieties on the brush using efficient organic tranformations. Here, we demonstrate the amine-anhydride reaction as a modular PPM route to functional brush surfaces using poly(styrene–maleic anhydride) (pSMA) copolymer brushes as a platform. The amine-anhydride reaction on pSMA surfaces proceeds to high conversions, with rapid kinetics, under ambient reaction conditions, and exploits a readily available library of functional amines. Using cystamine as a modifier, a convenient route to thiol-functionalized brushes was developed that enables sequential PPM modifications with a large library of alkenes using both base-catalyzed thiol-Michael and radical-mediated thiol–ene reactions. The high fidelity PPM reactions were demonstrated via the development of multifunctional, micropatterned brush surfaces. 
    more » « less
  2. Abstract

    Multifunctional homopolymers, defined here as polymers that contain multiple reactive functional groups per repeat unit, are versatile scaffolds for preparing complex macromolecules via post‐polymerization modification. However, there are limited methods for preparing multifunctional homopolymers that contain more than one nucleophilic site per repeat unit. Herein, a strategy to synthesize a multifunctional homopolymer using thiazolidine chemistry is demonstrated. Controlled radical polymerization of a thiazolidine‐containing acrylamido monomer allows for the synthesis of a polymer with pendent latent nucleophiles. Ring‐opening of the thiazolidine affords a homopolymer with two side‐chain reactive sites, an amine and a thiol. One‐pot functionalization via disulfide formation and acyl substitution is performed to introduce two distinct groups in each repeat unit.

     
    more » « less
  3. Chemically functional hydrogel microspheres hold significant potential in a range of applications including biosensing, drug delivery, and tissue engineering due to their high degree of flexibility in imparting a range of functions. In this work, we present a simple, efficient, and high-throughput capillary microfluidic approach for controlled fabrication of monodisperse and chemically functional hydrogel microspheres via formation of double emulsion drops with an ultra-thin oil shell as a sacrificial template. This method utilizes spontaneous dewetting of the oil phase upon polymerization and transfer into aqueous solution, resulting in poly(ethylene glycol) (PEG)-based microspheres containing primary amines (chitosan, CS) or carboxylates (acrylic acid, AA) for chemical functionality. Simple fluorescent labelling of the as-prepared microspheres shows the presence of abundant, uniformly distributed and readily tunable functional groups throughout the microspheres. Furthermore, we show the utility of chitosan's primary amine as an efficient conjugation handle at physiological pH due to its low pKa by direct comparison with other primary amines. We also report the utility of these microspheres in biomolecular conjugation using model fluorescent proteins, R-phycoerythrin (R-PE) and green fluorescent protein (GFPuv), via tetrazine– trans -cyclooctene (Tz–TCO) ligation for CS-PEG microspheres and carbodiimide chemistry for AA-PEG microspheres, respectively. The results show rapid coupling of R-PE with the microspheres' functional groups with minimal non-specific adsorption. In-depth protein conjugation kinetics studies with our microspheres highlight the differences in reaction and diffusion of R-PE with CS-PEG and AA-PEG microspheres. Finally, we demonstrate orthogonal one-pot protein conjugation of R-PE and GFPuv with CS-PEG and AA-PEG microspheres via simple size-based encoding. Combined, these results represent a significant advancement in the rapid and reliable fabrication of monodisperse and chemically functional hydrogel microspheres with tunable properties. 
    more » « less
  4. Abstract

    We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

     
    more » « less
  5. Abstract

    We report a novel glycan array architecture that binds the mannose‐specific glycan binding protein, concanavalin A (ConA), with sub‐femtomolar avidity. A new radical photopolymerization developed specifically for this application combines the grafted‐from thiol–(meth)acrylate polymerization with thiol–ene chemistry to graft glycans to the growing polymer brushes. The propagation of the brushes was studied by carrying out this grafted‐to/grafted‐from radical photopolymerization (GTGFRP) at >400 different conditions using hypersurface photolithography, a printing strategy that substantially accelerates reaction discovery and optimization on surfaces. The effect of brush height and the grafting density of mannosides on the binding of ConA to the brushes was studied systematically, and we found that multivalent and cooperative binding account for the unprecedented sensitivity of the GTGFRP brushes. This study further demonstrates the ease with which new chemistry can be tailored for an application as a result of the advantages of hypersurface photolithography.

     
    more » « less