[Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) supported by bidentate chelating ligands are a useful class of compounds for studies of redox chemistry and catalysis. Here, we show that the bis(2-pyridyl)methane ligand, also known as dipyridylmethane or dpma, can support [Cp*Rh] complexes in the formally + iii and + ii rhodium oxidation states. Specifically, two new rhodium complexes ([Cp*Rh(dpma)(L)] n+ , L = Cl − , CH 3 CN) have been isolated and structurally characterized, and the properties of the complexes have been compared with those of [Cp*Rh] complexes bearing the related dimethyldipyridylmethane (Me 2 dpma) ligand. Complex [Cp*Rh(dpma)(NCCH 3 )] 2+ displays a quasireversible rhodium( iii / ii ) reduction by cyclic voltammetry; related electron paramagnetic resonance (EPR) spectroscopic studies confirm access to the unusual rhodium( ii ) oxidation state. Further reduction to the formally rhodium( i ) oxidation state, however, is followed by deprotonation of dpma, as observed in electrochemical studies and chemical reduction experiments. This reactivity can be understood to occur as a consequence of the presence of doubly benzylic protons in the dpma ligand, since use of the analogous Me 2 dpma enables reduction to rhodium( i ) without involvement of ligand deprotonation. These findings highlight the important role of the ligand backbone substitution pattern in influencing the stability of highly-reduced complexes, a key class of metal species for study of electron and proton management in catalysis. 
                        more » 
                        « less   
                    
                            
                            Single-Electron Redox Chemistry on the [Cp*Rh] Platform Enabled by a Nitrated Bipyridyl Ligand
                        
                    
    
            [Cp*Rh] complexes (Cp* = pentamethylcyclopentadienyl) are attracting renewed interest in coordination chemistry and catalysis, but these useful compounds often undergo net two-electron redox cycling that precludes observation of individual one-electron reduction events. Here, we show that a [Cp*Rh] complex bearing the 4,4′-dinitro-2,2′-bipyridyl ligand (dnbpy) (3) can access a distinctive manifold of five oxidation states in organic electrolytes, contrasting with prior work that found no accessible reductions in aqueous electrolyte. These states are readily generated from a newly isolated and fully characterized rhodium(III) precursor complex 3, formulated as [Cp*Rh(dnbpy)Cl]PF6. Single-crystal X-ray diffraction (XRD) data, previously unavailable for the dnbpy ligand bound to the [Cp*Rh] platform, confirm the presence of both [η5-Cp*] and [κ2-dnbpy]. Four individual one-electron reductions of 3 are observed, contrasting sharply with the single two-electron reductions of other [Cp*Rh] complexes. Chemical preparation and the study of the singly reduced species with electronic absorption and electron paramagnetic resonance spectroscopies indicate that the first reduction is predominantly centered on the dnbpy ligand. Comparative cyclic voltammetry studies with [NBu4][PF6] and [NBu4][Cl] as supporting electrolytes indicate that the chloride ligand can be lost from 3 by ligand exchange upon reduction. Spectroelectrochemical studies with ultraviolet (UV)-visible detection reveal isosbestic behavior, confirming the clean interconversion of the reduced forms of 3 inferred from the voltammetry with [NBu4][PF6] as supporting electrolyte. Electrochemical reduction in the presence of triethylammonium results in an irreversible response, but does not give rise to catalytic H2 evolution, contrasting with the reactivity patterns observed in [Cp*Rh] complexes bearing bipyridyl ligands with less electron-withdrawing substituents. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1833087
- PAR ID:
- 10111900
- Date Published:
- Journal Name:
- Molecules
- Volume:
- 23
- Issue:
- 11
- ISSN:
- 1420-3049
- Page Range / eLocation ID:
- 2857
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Bipyridyl ligands are commonplace in catalysis. Structurally similar to this ligand class with unique properties is the novel di-(2-pyridyl)methanesulfonate (dpms) ligand, which is prepared and reacted with [Cp*IrCl2]2 to afford Cp*Ir(dpms)Cl (1) in high yield. Its single-crystal X-ray structure indicates an exo–(kappa2) conformation of the ligand, with the sulfonate group directed away from the iridium center. Halogen exchange by treatment of 1 with NaI gives the iodide derivative, Cp*Ir(dpms)I (2). Abstraction of the halogen from 1 using AgPF6 generates [Cp*Ir(dpms)]PF6 (3), which was not found to activate the C-H bonds of benzene.more » « less
- 
            Abstract A new method to synthesize complexes of the type [(CNC)RuII(NN)L]n+has been introduced, where CNC is a tridentate pincer composed of two (benz)imidazole derived NHC rings and a pyridyl ring, NN is a bidentate aromatic diimine ligand, L=bromide or acetonitrile, and n=1 or 2. Following this new method a series of six new complexes has been synthesized and characterized by spectroscopic, analytic, crystallographic, and computational methods. Their electrochemical properties have been studiedviacyclic voltammetry under both N2and CO2atmospheres. Photocatalytic reduction of CO2to CO was performed using these complexes both in the presence (sensitized) and absence (self‐sensitized) of an external photosensitizer. This study evaluates the effect of different CNC, NN, and L ligands in sensitized and self‐sensitized photocatalysis. Catalysts bearing the benzimidazole derived CNC pincer show much better activity for both sensitized and self‐sensitized photocatalysis as compared to catalysts bearing the imidazole derived CNC pincer. Furthermore, self‐sensitized photocatalysis requires a diimine ligand for CO2reduction with catalyst2ACNbeing the most active catalyst in this series with TON=85 and TOF=22 h−1with an electron donating 4,4′‐dimethyl‐2,2′‐bipyridyl (dmb) ligand and a benzimidazole derived CNC pincer.more » « less
- 
            Ligands play a central role in dictating the electronic properties of metal complexes to which they are coordinated. A fundamental understanding of changes in ligand properties can be used as design principles for more efficient catalysts. Designing ligands that have multiple protonation states that will change the properties of the coordination complex would be useful as potential ways of controlling catalysis, for example, as an on/off switch where one redox state exists below thermodynamic potential and another exists above. Thus, phenol moieties built into strongly coordinating ligands, like that of tpyPhOH (4′-(4-hydroxyphenyl)-2,2′:6′,2′’-terpyridine) may provide such a handle. Herein, we report the electrochemical and spectral characterization, and the crystallographic and computational analysis of two ruthenium analogs: [Ru(tpy)(tpyPhOH)](PF6)2 and [Ru(tpyPhOH)2] (PF6)2 (tpy =2,2′:6′,2′’-terpyridine). Cyclic voltammetry and differential pulse voltammetry indicate that two redox events occur, one of which is pH independent and we hypothesize that these follow an electrochemical- chemical-electrochemical (ECE) mechanism. XRD results of the ruthenium complexes’ protonated forms are generally consistent with expected bond lengths and angles and are in agreement with computational modeling. The properties are compared to a previously reported analog that contains the –OH group directly connected to terpyridine, [Ru(tpyOH)2](PF6)2, where tpyOH is 4′-hydroxy-2,2′:6′,2′’-terpyridine, with some intriguing differences. Overall, these data indicate that the phenyl-substituent decouples the phenol such that it behaves both as an electron withdrawing substituent and a location for a ligand centered oxidation event to occur.more » « less
- 
            The 2,2′-bipyridyl-6,6′-dicarboxylate ligand (bdc) has been shown in prior work to effectively capture the uranyl(VI) ion, UO2 2+, from aqueous solutions. However, the redox properties of the uranyl complex of this ligand have not been addressed despite the relevance of uranium-centered reduction to the nuclear fuel cycle and the presence of a bipyridyl core in bdc, a motif long recognized for its ability to support redox chemistry. Here, the bdc complex of UO2 2+ (1-UO2) has been synthetically prepared and isolated under nonaqueous conditions for the study of its reductive chemical and electrochemical behavior. Spectrochemical titration data collected using decamethylcobaltocene (Cp*2Co) as the reductant demonstrate that 1e− reduction of 1-UO2 is accessible, and companion near-infrared and infrared spectroscopic data, along with theoretical findings from density functional theory, provide evidence that supports the accessibility of the U(V) oxidation state. Data obtained for control ruthenium complexes of bdc and related polypyridyl dicarboxylate ligands provide a counterpoint to these findings; ligand-centered reduction of bdc in these control compounds occurs at potentials more negative than those measured for reduction of 1-UO2, further supporting the generation of uranium(V) in 1-UO2. Taken together, these results underscore the usefulness of bdc as a ligand for actinyl ions and suggest that it could be useful for further studies of the reductive activation of these unique species.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    