skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Approximating large scale arbitrary unitaries with integrated multimode interferometers
Unitary operations using linear optics have many applications within the quantum and neuromorphic space. In silicon photonics, using networks of simple beam splitters and phase shifters have proven sufficient to realize large-scale arbitrary unitaries. While this technique has shown success with high fidelity, the grid physically scales with an upper bound of O(n2). Consequently, we propose to considerably reduce the footprint by using multimode interference (MMI) devices. In this paper, we investigate the active control of these MMIs and their suitability for approximating traditionally used unitary circuits.  more » « less
Award ID(s):
1810282
PAR ID:
10111903
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings Volume 10984, Quantum Information Science, Sensing, and Computation XI; 109840J
Page Range / eLocation ID:
20
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recurrent neural networks (RNNs) have been successfully used on a wide range of sequential data problems. A well known difficulty in using RNNs is the vanishing or exploding gradient problem. Recently, there have been several different RNN architectures that try to mitigate this issue by maintaining an orthogonal or unitary recurrent weight matrix. One such architecture is the scaled Cayley orthogonal recurrent neural network (scoRNN) which parameterizes the orthogonal recurrent weight matrix through a scaled Cayley transform. This parametrization contains a diagonal scaling matrix consisting of positive or negative one entries that can not be optimized by gradient descent. Thus the scaling matrix is fixed before training and a hyperparameter is introduced to tune the matrix for each particular task. In this paper, we develop a unitary RNN architecture based on a complex scaled Cayley transform. Unlike the real orthogonal case, the transformation uses a diagonal scaling matrix consisting of entries on the complex unit circle which can be optimized using gradient descent and no longer requires the tuning of a hyperparameter. We also provide an analysis of a potential issue of the modReLU activiation function which is used in our work and several other unitary RNNs. In the experiments conducted, the scaled Cayley unitary recurrent neural network (scuRNN) achieves comparable or better results than scoRNN and other unitary RNNs without fixing the scaling matrix. 
    more » « less
  2. Abstract In a recent paper, we defined a type of weighted unitary design called a twisted unitary 1-group and showed that such a design automatically induced error-detecting quantum codes. We also showed that twisted unitary 1-groups correspond to irreducible products of characters thereby reducing the problem of code-finding to a computation in the character theory of finite groups. Using a combination of GAP computations and results from the mathematics literature on irreducible products of characters, we identify many new non-trivial quantum codes with unusual transversal gates. Transversal gates are of significant interest to the quantum information community for their central role in fault tolerant quantum computing. Most unitary$$\text {t}$$ t -designs have never been realized as the transversal gate group of a quantum code. We, for the first time, find nontrivial quantum codes realizing nearly every finite group which is a unitary 2-design or better as the transversal gate group of some error-detecting quantum code. 
    more » « less
  3. We explore how to build quantum circuits that compute the lowest energy state corresponding to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit. We create an explicit unitary and a variationally trained unitary that maps any vector output by ansatz A(α→) from a defined subspace to a vector in the symmetry space. The parameters are trained varitionally to minimize the energy, thus keeping the output within the labelled symmetry value. The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2 Hamiltonian within Sz=0 subspace using S2 symmetry. We have found the variationally trained unitary gives good results with very low depth circuits and can thus be used to prepare symmetry states within near term quantum computers. 
    more » « less
  4. Tauman Kalai, Yael (Ed.)
    We study unitary property testing, where a quantum algorithm is given query access to a black-box unitary and has to decide whether it satisfies some property. In addition to containing the standard quantum query complexity model (where the unitary encodes a binary string) as a special case, this model contains "inherently quantum"; problems that have no classical analogue. Characterizing the query complexity of these problems requires new algorithmic techniques and lower bound methods. Our main contribution is a generalized polynomial method for unitary property testing problems. By leveraging connections with invariant theory, we apply this method to obtain lower bounds on problems such as determining recurrence times of unitaries, approximating the dimension of a marked subspace, and approximating the entanglement entropy of a marked state. We also present a unitary property testing-based approach towards an oracle separation between QMA and QMA(2), a long standing question in quantum complexity theory. 
    more » « less
  5. Braided-enriched monoidal categories were introduced in the work of Morrison–Penneys, where they were characterized using braided central functors. The recent work of Kong–Yuan–Zhang–Zheng and Dell extended this characterization to an equivalence of 2-categories. Since their introduction, braided-enriched fusion categories have been used to describe certain phenomena in topologically ordered systems in theoretical condensed matter physics. While these systems are unitary, there was previously no general notion of unitarity for enriched categories in the literature. We supply the notion of unitarity for enriched categories and braided-enriched monoidal categories and extend the above 2-equivalence to the unitary setting. 
    more » « less