skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unitary braided-enriched monoidal categories
Braided-enriched monoidal categories were introduced in the work of Morrison–Penneys, where they were characterized using braided central functors. The recent work of Kong–Yuan–Zhang–Zheng and Dell extended this characterization to an equivalence of 2-categories. Since their introduction, braided-enriched fusion categories have been used to describe certain phenomena in topologically ordered systems in theoretical condensed matter physics. While these systems are unitary, there was previously no general notion of unitarity for enriched categories in the literature. We supply the notion of unitarity for enriched categories and braided-enriched monoidal categories and extend the above 2-equivalence to the unitary setting.  more » « less
Award ID(s):
2154389 1654159
PAR ID:
10628221
Author(s) / Creator(s):
; ;
Publisher / Repository:
European Mathematical Society
Date Published:
Journal Name:
Quantum Topology
Volume:
15
Issue:
3
ISSN:
1663-487X
Page Range / eLocation ID:
567 to 632
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple$$\textrm{C}^*$$ C -categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces. 
    more » « less
  2. Generalized Temperley–Lieb–Jones (TLJ) 2-categories associated to weighted bidirected graphs were introduced in unpublished work of Morrison and Walker. We introduce unitary modules for these generalized TLJ 2-categories as strong ∗-pseudofunctors into the ∗-2-category of row-finite separable bigraded Hilbert spaces. We classify these modules up to ∗-equivalence in terms of weighted bi-directed fair and balanced graphs in the spirit of Yamagami’s classification of fiber functors on TLJ categories and DeCommer and Yamashita’s classification of unitary modules for [Formula: see text]. 
    more » « less
  3. A bstract In this work, we use Ising chain and Kitaev chain to check the validity of an earlier proposal in arXiv:2011.02859 that enriched fusion (higher) categories provide a unified categorical description of all gapped/gapless quantum liquid phases, including symmetry-breaking phases, topological orders, SPT/SET orders and CFT-type gapless quantum phases. In particular, we show explicitly that, in each gapped phase realized by these two models, the spacetime observables form a fusion category enriched in a braided fusion category such that its monoidal center is trivial. We also study the categorical descriptions of the boundaries of these models. In the end, we obtain a classification of and the categorical descriptions of all 1-dimensional (spatial dimension) gapped quantum phases with a bosonic/fermionic finite onsite symmetry. 
    more » « less
  4. A bstract We develop a mathematical theory of symmetry protected trivial (SPT) orders and anomaly-free symmetry enriched topological (SET) orders in all dimensions via two different approaches with an emphasis on the second approach. The first approach is to gauge the symmetry in the same dimension by adding topological excitations as it was done in the 2d case, in which the gauging process is mathematically described by the minimal modular extensions of unitary braided fusion 1-categories. This 2d result immediately generalizes to all dimensions except in 1d, which is treated with special care. The second approach is to use the 1-dimensional higher bulk of the SPT/SET order and the boundary-bulk relation. This approach also leads us to a precise mathematical description and a classification of SPT/SET orders in all dimensions. The equivalence of these two approaches, together with known physical results, provides us with many precise mathematical predictions. 
    more » « less
  5. We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category C \mathcal {C} . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when C \mathcal {C} is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in C \mathcal {C} and pivotal module tensor categories over C \mathcal {C} equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras. 
    more » « less