skip to main content


Title: Design Educators’ Conceptions of Prototyping in Engineering Design Courses
This is a research study that investigates the range of conceptions of prototyping in engineering design courses through exploring the conceptions and implementations from the instructors’ perspective. Prototyping is certainly an activity central to engineering design. The context of prototyping to support engineering education and practice has a range of implementations in an undergraduate engineering curriculum, from first-year engineering to capstone engineering design experiences. Understanding faculty conceptions’ of the reason, purpose, and place of prototyping can help illustrate how teaching and learning of the engineering design process is realistically implemented across a curriculum and how students are prepared for work practice. We seek to understand, and consequently improve, engineering design teaching and learning, through transformations of practice that are based on engineering education research. In this exploratory study, we interviewed three faculty members who teach engineering design in project-based learning courses across the curriculum of an undergraduate engineering program. This builds on related work done by the authors that previously investigated undergraduate engineering students’ conceptions of prototyping activities and process. With our instructor participants, a similar interview protocol was followed through semi-structured qualitative interviews. Data analysis has been undertaken through an emerging thematic analysis of these interview transcripts. Early findings characterize the focus on teaching the design process; the kind of feedback that the educators provide on students’ prototypes; students’ behavior while working on design projects; and educators’ perspectives on the design course. Understanding faculty conceptions with students’ conceptions of prototyping can shed light on the efficacy of using prototyping as an authentic experience in design teaching and learning. In project-based learning courses, particular issues of authenticity and assessment are under consideration, especially across the curriculum. More specifically, “proportions of problems” inform “problem solving” as one of the key characteristics in design thinking, teaching and learning. More attention to prototyping as part of the study of problem-solving processes can be useful to enhance understanding of the impact of instructional design. Challenges for teaching engineering design exist, and may be due to difficulties in framing design problems, recognizing what expertise students possess, and assessing their expertise to help them reach their goals, all at an appropriate place and ambiguity with student learning goals. Initial findings show that prototyping activities can help students become more reflective on their design. Scaffolded activities in prototyping can support self-regulated learning by students. The range of support and facilities, such as campus makerspaces, may also help students and instructors alike develop industry-ready engineering students.  more » « less
Award ID(s):
1723802
NSF-PAR ID:
10112030
Author(s) / Creator(s):
;
Date Published:
Journal Name:
ASEE Annual Conference proceedings
ISSN:
1524-4644
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less
  2. The Mechanical Engineering Department at a private, mid-sized university was awarded the National Science Foundation (NSF) Revolutionizing Engineering and Computer Science Departments (RED) grant in July 2017 to support the development of a program that fosters students’ engineering identities in a culture of doing engineering with industry engineers. The Department is cultivating this culture of “engineering with engineers” through a strong connection to industry, and through changes in the four essential areas of, a shared department vision, faculty, curriculum and supportive policies. This paper reports our continued efforts in these four areas and our measurement of their impact. Shared department vision: During the first year of the project, the department worked together to revise its mission to reflect the goal of fostering engineering identity. From this shared vision, the department aims to build a culture to promote inclusive practices. In the past year during the COVID-19 pandemic, this shared vision continued to guide many acts of care and community building for the department. Faculty: The pandemic prompted faculty to reflect on how they delivered their courses and cared for students. To promote inclusive practice, faculty utilized recorded lectures, online collaboration tools and instant messaging apps to provide multiple ways of communication for students. Although faculty summer immersion had to be postponed due to pandemic, interactions with industry continued in design courses, and via virtual seminars and socials. Efforts were also extended to strengthen connections between the department and recent graduates who just began working in industry and could become mentors for current students. Curriculum: A new curriculum to support the goals of this project was rolled out in the 2019-20 academic year. The pandemic hit right in the middle of the initial implementation of this new curriculum. Therefore, to maintain the essence of the new curriculum that emphasizes hands-on, doing engineering and experiential learning in the remote setting, many adjustments and modifications were made. Although initial evidence indicates the effectiveness of the new courses/curriculum even under remote teaching and learning, there are also many lessons-learned that can be examined for future implementations and modifications of the curriculum. Supportive policies: The department agreed to celebrate various acts of care for students and cares for teaching and learning in Annual Performance Reviews. Faculty also worked with other departments, the college, and the university to develop supportive policies beyond the department. For example, based on the recommendation from the department, the college set up a Student Advocate role who would assist students navigate through any incident that make they feel excluded. The new university tenure and promotion guidelines have just been approved with the support from the faculty in the department. Additionally, the department’s effort of building an inclusive culture is aligned with the university initiative for a reform to emphasize anti-racism curriculum. Details of the action items in each area of change that the department has taken to build this inclusive culture to foster engineering identity are shared in this paper. In addition, research gauging the impact of our efforts are discussed. This project was funded by the Division of Undergraduate Education (DUE) IUSE/PFE: RED grant through NSF. 
    more » « less
  3. Community colleges provide an important pathway for many prospective engineering graduates, especially those from traditionally underrepresented groups. However, due to a lack of facilities, resources, student demand and/or local faculty expertise, the breadth and frequency of engineering course offerings is severely restricted at many community colleges. This in turn presents challenges for students trying to maximize their transfer eligibility and preparedness. Through a grant from the National Science Foundation Improving Undergraduate STEM Education program (NSF IUSE), three community colleges from Northern California collaborated to increase the availability and accessibility of a comprehensive lower-division engineering curriculum, even at small-to-medium sized community colleges. This was accomplished by developing resources and teaching strategies that could be employed in a variety of delivery formats (e.g., fully online, online/hybrid, flipped face-to-face, etc.), providing flexibility for local community colleges to leverage according to their individual needs. This paper focuses on the iterative development, testing, and refining of the resources for an introductory Materials Science course with 3-unit lecture and 1-unit laboratory components. This course is required as part of recently adopted statewide model associate degree curricula for transfer into Civil, Mechanical, Aerospace, and Manufacturing engineering bachelor’s degree programs at California State Universities. However, offering such a course is particularly challenging for many community colleges, because of a lack of adequate expertise and/or laboratory facilities and equipment. Consequently, course resources were developed to help mitigate these challenges by streamlining preparation for instructors new to teaching the course, as well as minimizing the face-to-face use of traditional materials testing equipment in the laboratory portion of the course. These same resources can be used to support online hybrid and other alternative (e.g., emporium) delivery approaches. After initial pilot implementation of the course during the Spring 2015 semester by the curriculum designer in a flipped student-centered format, these same resources were then implemented by an instructor who had never previously taught the course, at a different community college that did not have its own materials laboratory facilities. A single site visit was arranged with a nearby community college to afford students an opportunity to complete certain lab activities using traditional materials testing equipment. Lessons learned during this attempt were used to inform curriculum revisions, which were evaluated in a repeat offering the following year. In all implementations of the course, student surveys and interviews were used to determine students’ perceptions of the effectiveness of the course resources, student use of these resources, and overall satisfaction with the course. Additionally, student performance on objective assessments was compared with that of traditional lecture delivery of the course by the curriculum designer in prior years. During initial implementations of the course, results from these surveys and assessments revealed low levels of student satisfaction with certain aspects of the flipped approach and course resources, as well as reduced learning among students at the alternate institution. Subsequent modifications to the curriculum and delivery approach were successful in addressing most of these deficiencies. 
    more » « less
  4. This NSF Grantees poster discusses an early phase Revolutionizing Engineering Departments (RED) project which is designed to address preparing engineering students to address large scale societal problems, the solutions of which integrate multiple disciplinary perspectives. These types of problems are often termed “convergent problems”. The idea of convergence captures how different domains of expertise contribute to solving a problem, but also the value of the network of connections between areas of knowledge that is built in undertaking such activities. While most existing efforts at convergence focus at the graduate and post-graduate levels, this project supports student development of capabilities to address convergent problems in an undergraduate disciplinary-based degree program in electrical and computer engineering. This poster discusses some of the challenges faced in implementing such learning including how to decouple engineering topics from societal concerns in ways that are relevant to undergraduate students yet retain aspects of convergence, negotiations between faculty on ways to balance discipline-specific skills with the breadth required for systemic understanding, and challenges in integrating relevant projects into courses with different faculty and instructional learning goals. One of the features of the project is that it builds on ideas from Communities of Transformation by basing activities on a coherent philosophical model that guides theories of change. The project has adopted Amartya Sen’s Development as Freedom or capabilities framework as the organizing philosophy. In this model the freedom for individuals to develop capabilities they value is viewed as both the means and end of development. The overarching goal of the project is then for students to build personalized frameworks based on their value systems which allow them to later address complex, convergent problems. Framework development by individual students is supported in the project through several activities: modifying grading practices to provide detailed feedback on skills that support convergence, eliciting self-narratives from students about their pathways through courses and projects with the goal of developing reflection, and carefully integrating educational software solutions that can reduce some aspects of faculty workload which is hypothesized to enable faculty to focus efforts on integrating convergent projects throughout the curriculum. The poster will present initial results on the interventions to the program including grading, software integration, projects, and narratives. The work presented will also cover an ethnographic study of faculty practices which serves as an early-stage baseline to calibrate longer-term changes. 
    more » « less
  5. The drive to encourage young people to pursue degrees and careers in engineering has led to an increase in student populations in engineering programs. For some institutions, such as large public research institutions, this has led to large class sizes for courses that are commonly taken across multiple programs. While this decision is reasonable from an operational and resource management perspective, research on large classes have shown that students suffer decreased engagement, motivation and achievement. Instructors, on the other hand, report having difficulty establishing rapport with their students and a growing inability to monitor students’ learning gains and provide quality individualized feedback. To address these issues, our project draws from Lattuca and Stark’s Academic Plan model, which incorporates a thorough consideration of factors influencing curricular activities that can be applied at the course, program, and institutional levels, and assumes that instructors are key actors in curriculum development and revision. We aim to revitalize feedback loops to help instructors and departments continuously improve. Recognizing that we must understand both individual and systems level perspectives, we prioritize regular engagement between faculty and institutional support structures to collaboratively identify problems and systematically establish continuous improvement. In the first phase of this NSF IUSE Institutional Transformation project, we focus on specifically prompting and studying the experiences of 8 instructors of foundational engineering courses usually taught in large class sizes across 4 different departments at a large public research institution. We collected qualitative data (semi-structured interviews, reflective journals, course-related documents) and quantitative data (student surveys and institution-provided transcript data) to answer research questions (e.g., what data do faculty teaching large foundational undergraduate engineering courses identify as being useful so that they may enhance students’ experiences and outcomes within the classes that they teach and across students’ multiple large classes?) at the intersection of learning analytics and faculty change. The data was used as a baseline to further refine data collection protocols, identify data that faculty consider meaningful and useful for managing large foundational engineering courses, and consider ways of productively leveraging institutional data to improve the learning experience in these courses. Data collection for the first phase is ongoing and will continue through the Spring 2018 semester. Findings for this paper will include high-level insights from Fall interviews with instructors as well as data visualizations created from the population-level data characterizing student performance in the foundational courses within the context of pre-college characteristics (e.g., SAT scores) and/or other academic outcomes (e.g., major switching within or out of engineer, degree attainment). 
    more » « less