skip to main content

Title: Revisions to the fossil sporophyte record of Marsilea
Abstract The fossil record of Marsilea is challenging to assess, due in part to unreliable reports and conflicting opinions regarding the proper application of the names Marsilea and Marsileaceaephyllum to fossil leaves and leaflets similar to those of modern Marsilea . Specimens examined for this study include material assigned to Marsileaceaephyllum johnhallii , purportedly the oldest fossil record of a Marsilea -like sporophyte from the Lower Cretaceous of the Dakota Formation, Kansas, U.S.A.; leaves and leaf whorls of the extinct aquatic angiosperm Fortuna from several Late Cretaceous and Paleocene localities in western North America; and leaves and leaflets resembling Marsilea from the Eocene Green River Formation, Colorado and Utah, U.S.A. Literature on the fossil record of Marsilea was also reviewed. As a result, several taxonomic changes are proposed. Marsileaceaephyllum johnhallii is reinterpreted as an aquatic angiosperm that shares some architectural features with the genus Fortuna , although Marsileaceaephyllum is here maintained as a distinct genus with an emended diagnosis; under this reinterpretation, the name Marsileaceaephyllum can no longer be applied to sporophyte organs with affinities to Marsileaceae. Three valid fossil Marsilea species are recognized on the basis of sporophyte material that includes characteristic quadrifoliolate leaves and reticulate-veined leaflets: Marsilea campanica more » (J. Kvaček & Herman) Hermsen, comb. nov., from the Upper Cretaceous Grünbach Formation, Austria; Marsilea mascogos Estrada-Ruiz et al., from the Upper Cretaceous Olmos Formation, Mexico; and Marsilea sprungerorum Hermsen, sp. nov., from the Eocene Green River Formation, U.S.A. The species are distinguished from one another based on leaflet dimensions. Leaves from the Eocene Wasatch Formation, U.S.A., are transferred from Marsileaceaephyllum back to Marsilea , although not assigned to a fossil species. Finally, an occurrence of Marsilea from the Oligocene of Ethiopia is reassigned to Salvinia . A critical evaluation of the fossil record of Marsilea thus indicates that (1) the oldest fossil marsileaceous sporophytes bearing Marsilea -like leaves are from the Campanian; (2) only four credible records of sporophyte material attributable to Marsilea are known; and (3) the oldest dispersed Marsilea spores are known from the Oligocene. « less
Authors:
Award ID(s):
1829376
Publication Date:
NSF-PAR ID:
10112161
Journal Name:
Acta Palaeobotanica
Volume:
59
Issue:
1
Page Range or eLocation-ID:
27 to 50
ISSN:
2082-0259
Sponsoring Org:
National Science Foundation
More Like this
  1. Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabianmore »radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

    « less
  2. Abstract Two new Early Cretaceous (Aptian-Albian) species of fossil bennettitalean leaves are described from central Mongolia and assigned to the genus Nilssoniopteris . Nilssoniopteris tomentosa F.Herrera, G.Shi, Tsolmon, Ichinnorov, Takahashi, P.R.Crane, et Herend. sp. nov., isolated from bulk sediment samples collected for mesofossils in the Tevshiingovi Formation at the Tevshiin Govi opencast coal mine, is distinctive in having a dense, well-developed indumentum composed of branched, flattened multicellular trichomes on the abaxial leaf surface. This species provides the first direct evidence of complex multicellular trichomes in Bennettitales and adds to the evidence of leaf anatomical features in the group that were probably advantageous in increasing water use efficiency and/or perhaps had other functions such as deterring insect herbivory. Comparison with other well-preserved leaves of Bennettitales, including Nilssoniopteris shiveeovoensis F.Herrera, G.Shi, Tsolmon, Ichinnorov, Takahashi, P.R.Crane, et Herend. sp. nov., collected as hand specimens from the Khukhteeg Formation at the Shivee Ovoo locality, suggests that the trichome bases seen commonly on the abaxial cuticle of bennettitalean leaves bore trichomes with very low fossilization potential. In some cases these trichomes may have been shed as the leaves matured, but in other cases they probably decayed during diagenesis or were destroyed during the standard processesmore »by which fossil leaf cuticles are prepared.« less
  3. Chusquea oxyphylla Freng. & Parodi, 1941, a fossilized leafy branch from the early Eocene (52 Ma), late-Gondwanan Laguna del Hunco biota of southern Argentina, is still cited as the oldest potential bamboo fossil and as evidence for a Gondwanan origin of bamboos. On recent examination, the holotype specimen was found to lack any typical bamboo characters such as nodes, sheaths, ligules, pseudopetioles, or parallel leaf venation. Instead, it has decurrent, clasping, univeined, heterofacially twisted leaves with thickened, central-longitudinal bands of presumed transfusion tissue. These and other features allow confident placement in the living Neotropical and West Pacific disjunct genus Retrophyllum (Podocarpaceae), which was recently described from the same fossil site based on abundant, well-preserved material. However, the 1941 fossil holds nomenclatural priority, requiring the new combination Retrophyllum oxyphyllum (Freng. & Parodi) Wilf, comb. nov. No reliable bamboo fossils remain from Gondwana, and the oldest South American bamboo fossils are Pliocene. Chusquea joins a growing list of living New World genera that are no longer included in Paleogene Patagonian floras, whose extant relatives are primarily concentrated in Australasia and Malesia via the ancient Gondwanan route through Antarctica.
  4. Leaves are the most abundant and visible plant organ, both in the modern world and the fossil record. Identifying foliage to the correct plant family based on leaf architecture is a fundamental botanical skill that is also critical for isolated fossil leaves, which often, especially in the Cenozoic, represent extinct genera and species from extant families. Resources focused on leaf identification are remarkably scarce; however, the situation has improved due to the recent proliferation of digitized herbarium material, live-plant identification applications, and online collections of cleared and fossil leaf images. Nevertheless, the need remains for a specialized image dataset for comparative leaf architecture. We address this gap by assembling an open-access database of 30,252 images of vouchered leaf specimens vetted to family level, primarily of angiosperms, including 26,176 images of cleared and x-rayed leaves representing 354 families and 4,076 of fossil leaves from 48 families. The images maintain original resolution, have user-friendly filenames, and are vetted using APG and modern paleobotanical standards. The cleared and x-rayed leaves include the Jack A. Wolfe and Leo J. Hickey contributions to the National Cleared Leaf Collection and a collection of high-resolution scanned x-ray negatives, housed in the Division of Paleobotany, Department of Paleobiology,more »Smithsonian National Museum of Natural History, Washington D.C.; and the Daniel I. Axelrod Cleared Leaf Collection, housed at the University of California Museum of Paleontology, Berkeley. The fossil images include a sampling of Late Cretaceous to Eocene paleobotanical sites from the Western Hemisphere held at numerous institutions, especially from Florissant Fossil Beds National Monument (late Eocene, Colorado), as well as several other localities from the Late Cretaceous to Eocene of the Western USA and the early Paleogene of Colombia and southern Argentina. The dataset facilitates new research and education opportunities in paleobotany, comparative leaf architecture, systematics, and machine learning.« less
  5. The Alaska Range suture zone exposes Cretaceous to Quaternary marine and nonmarine sedimentary and volcanic rocks sandwiched between oceanic rocks of the accreted Wrangellia composite terrane to the south and older continental terranes to the north. New U-Pb zircon ages, 40Ar/39Ar, ZHe, and AFT cooling ages, geochemical compositions, and geological field observations from these rocks provide improved constraints on the timing of Cretaceous to Miocene magmatism, sedimentation, and deformation within the collisional suture zone. Our results bear on the unclear displacement history of the seismically active Denali fault, which bisects the suture zone. Newly identified tuffs north of the Denali fault in sedimentary strata of the Cantwell Formation yield ca. 72 to ca. 68 Ma U-Pb zircon ages. Lavas sampled south of the Denali fault yield ca. 69 Ma 40Ar/39Ar ages and geochemical compositions typical of arc assemblages, ranging from basalt-andesite-trachyte, relatively high-K, and high concentrations of incompatible elements attributed to slab contribution (e.g., high Cs, Ba, and Th). The Late Cretaceous lavas and bentonites, together with regionally extensive coeval calc-alkaline plutons, record arc magmatism during contractional deformation and metamorphism within the suture zone. Latest Cretaceous volcanic and sedimentary strata are locally overlain by Eocene Teklanika Formation volcanic rocks withmore »geochemical compositions transitional between arc and intraplate affinity. New detrital-zircon data from the modern Teklanika River indicate peak Teklanika volcanism at ca. 57 Ma, which is also reflected in zircon Pb loss in Cantwell Formation bentonites. Teklanika Formation volcanism may reflect hypothesized slab break-off and a Paleocene–Eocene period of a transform margin configuration. Mafic dike swarms were emplaced along the Denali fault from ca. 38 to ca. 25 Ma based on new 40Ar/39Ar ages. Diking along the Denali fault may have been localized by strike-slip extension following a change in direction of the subducting oceanic plate beneath southern Alaska from N-NE to NW at ca. 46–40 Ma. Diking represents the last recorded episode of significant magmatism in the central and eastern Alaska Range, including along the Denali fault. Two tectonic models may explain emplacement of more primitive and less extensive Eocene–Oligocene magmas: delamination of the Late Cretaceous–Paleocene arc root and/or thickened suture zone lithosphere, or a slab window created during possible Paleocene slab break-off. Fluvial strata exposed just south of the Denali fault in the central Alaska Range record synorogenic sedimentation coeval with diking and inferred strike-slip displacement. Deposition occurred ca. 29 Ma based on palynomorphs and the youngest detrital zircons. U-Pb detrital-zircon geochronology and clast compositional data indicate the fluvial strata were derived from sedimentary and igneous bedrock presently exposed within the Alaska Range, including Cretaceous sources presently exposed on the opposite (north) side of the fault. The provenance data may indicate ~150 km or more of dextral offset of the ca. 29 Ma strata from inferred sediment sources, but different amounts of slip are feasible. Together, the dike swarms and fluvial strata are interpreted to record Oligocene strike-slip movement along the Denali fault system, coeval with strike-slip basin development along other segments of the fault. Diking and sedimentation occurred just prior to the onset of rapid and persistent exhumation ca. 25 Ma across the Alaska Range. This phase of reactivation of the suture zone is interpreted to reflect the translation along and convergence of southern Alaska across the Denali fault driven by highly coupled flat-slab subduction of the Yakutat microplate, which continues to accrete to the southern margin of Alaska. Furthermore, a change in Pacific plate direction and velocity at ca. 25 Ma created a more convergent regime along the apex of the Denali fault curve, likely contributing to the shutting off of near-fault extension- facilitated arc magmatism along this section of the fault system and increased exhumation rates.« less