skip to main content


Title: Revisions to the fossil sporophyte record of Marsilea
Abstract The fossil record of Marsilea is challenging to assess, due in part to unreliable reports and conflicting opinions regarding the proper application of the names Marsilea and Marsileaceaephyllum to fossil leaves and leaflets similar to those of modern Marsilea . Specimens examined for this study include material assigned to Marsileaceaephyllum johnhallii , purportedly the oldest fossil record of a Marsilea -like sporophyte from the Lower Cretaceous of the Dakota Formation, Kansas, U.S.A.; leaves and leaf whorls of the extinct aquatic angiosperm Fortuna from several Late Cretaceous and Paleocene localities in western North America; and leaves and leaflets resembling Marsilea from the Eocene Green River Formation, Colorado and Utah, U.S.A. Literature on the fossil record of Marsilea was also reviewed. As a result, several taxonomic changes are proposed. Marsileaceaephyllum johnhallii is reinterpreted as an aquatic angiosperm that shares some architectural features with the genus Fortuna , although Marsileaceaephyllum is here maintained as a distinct genus with an emended diagnosis; under this reinterpretation, the name Marsileaceaephyllum can no longer be applied to sporophyte organs with affinities to Marsileaceae. Three valid fossil Marsilea species are recognized on the basis of sporophyte material that includes characteristic quadrifoliolate leaves and reticulate-veined leaflets: Marsilea campanica (J. Kvaček & Herman) Hermsen, comb. nov., from the Upper Cretaceous Grünbach Formation, Austria; Marsilea mascogos Estrada-Ruiz et al., from the Upper Cretaceous Olmos Formation, Mexico; and Marsilea sprungerorum Hermsen, sp. nov., from the Eocene Green River Formation, U.S.A. The species are distinguished from one another based on leaflet dimensions. Leaves from the Eocene Wasatch Formation, U.S.A., are transferred from Marsileaceaephyllum back to Marsilea , although not assigned to a fossil species. Finally, an occurrence of Marsilea from the Oligocene of Ethiopia is reassigned to Salvinia . A critical evaluation of the fossil record of Marsilea thus indicates that (1) the oldest fossil marsileaceous sporophytes bearing Marsilea -like leaves are from the Campanian; (2) only four credible records of sporophyte material attributable to Marsilea are known; and (3) the oldest dispersed Marsilea spores are known from the Oligocene.  more » « less
Award ID(s):
1829376
NSF-PAR ID:
10112161
Author(s) / Creator(s):
Date Published:
Journal Name:
Acta Palaeobotanica
Volume:
59
Issue:
1
ISSN:
2082-0259
Page Range / eLocation ID:
27 to 50
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. PREMISE

    Mosses are a major component of Arctic vegetation today, with >500 species known to date. However, the origins of the Arctic moss flora are poorly documented in the fossil record, especially prior to the Pliocene. Here, we present the first anatomically preserved pre‐Cenozoic Arctic moss and discuss how the unique biology of bryophytes has facilitated their success in polar environments over geologic time.

    METHODS

    A permineralized fossil moss gametophyte within a block of Late Cretaceous terrestrial limestone, collected along the Colville River on the North Slope of Alaska, was studied in serial sections prepared using the cellulose acetate peel technique.

    RESULTS

    The moss gametophyte is branched and has leaves with a broad base, narrow blade, and excurrent costa. We describe this fossil asCynodontium luthiisp. nov., an extinct species of a genus that is known from the High Arctic today.Cynodontium luthiiis the oldest evidence of the family Rhabdoweisiaceae (by ≥18 Ma) and reveals that genera of haplolepideous mosses known in the extant Arctic flora also lived in high‐latitude temperate deciduous forests during the Late Cretaceous.

    CONCLUSIONS

    The occurrence ofC. luthiiin Cretaceous sediments, together with a rich Pliocene‐to‐Holocene fossil record of extant moss genera in the High Arctic, suggests that some moss lineages have exploited their poikilohydric, cold‐ and desiccation‐tolerant physiology to live in the region when it experienced both temperate and freezing climates.

     
    more » « less
  2. Abstract

    Eubrachyurans, or ‘higher’ true crabs, are the most speciose group of decapod crustaceans and have a rich fossil record extending into the Early Cretaceous. However, most extant families are first found in the fossil record in the Palaeogene, and particularly in the Eocene. Unfortunately, fossils of many early eubrachyuran groups are often fragmentary, and only a few studies have combined extinct and extant taxa in a phylogenetic context using different optimality criteria. Here, we report the dairoidid crabPhrynolambrus sagittalissp. nov., an enigmatic eubrachyuran from the upper Eocene of Huesca (northern Spain), whose completeness and exquisite preservation permit examination of its anatomy in a phylogenetic context. Dairoidids have previously been considered among the oldest stone crabs (Eriphioidea) or elbow crabs (Parthenopoidea), two disparate and distantly related groups of true crabs living today. Mechanical preparation and computed tomography of the fossil material revealed several diagnostic features that allow a detailed comparison with families across the crab tree of life, and test hypotheses about its phylogenetic affinities.Phrynolambrus sagittalisis the first record of the genus in the Iberian Peninsula, and represents one of the oldest crown parthenopoidean crabs worldwide, expanding our knowledge of the biogeographical distribution of elbow crabs during the Palaeogene, as well as their early origins, anatomical diversity and systematic affinities. Understanding the disparity of Eocene eubrachyurans is pivotal to disentangling the systematic relationships among crown families, and interpreting the spatio‐temporal patterns leading to the evolution of modern faunas.

     
    more » « less
  3. Hyaenodonta is a diverse, extinct group of carnivorous mammals that included weasel- to rhinoceros-sized species. The oldest-known hyaenodont fossils are from the middle Paleocene of North Africa and the antiquity of the group in Afro-Arabia led to the hypothesis that it originated there and dispersed to Asia, Europe, and North America. Here we describe two new hyaenodont species based on the oldest hyaenodont cranial specimens known from Afro-Arabia. The material was collected from the latest Eocene Locality 41 (L-41, ∼34 Ma) in the Fayum Depression, Egypt.Akhnatenavus nefertiticyonsp. nov. has specialized, hypercarnivorous molars and an elongate cranial vault. InA. nefertiticyonthe tallest, piercing cusp on M1–M2is the paracone.Brychotherium ephalmosgen. et sp. nov. has more generalized molars that retain the metacone and complex talonids. InB. ephalmosthe tallest, piercing cusp on M1–M2is the metacone. We incorporate this new material into a series of phylogenetic analyses using a character-taxon matrix that includes novel dental, cranial, and postcranial characters, and samples extensively from the global record of the group. The phylogenetic analysis includes the first application of Bayesian methods to hyaenodont relationships.B. ephalmosis consistently placed within Teratodontinae, an Afro-Arabian clade with several generalist and hypercarnivorous forms, andAkhnatenavusis consistently recovered in Hyainailourinae as part of an Afro-Arabian radiation. The phylogenetic results suggest that hypercarnivory evolved independently three times within Hyaenodonta: in Teratodontinae, in Hyainailourinae, and in Hyaenodontinae. Teratodontines are consistently placed in a close relationship with Hyainailouridae (Hyainailourinae + Apterodontinae) to the exclusion of “proviverrines,” hyaenodontines, and several North American clades, and we propose that the superfamily Hyainailouroidea be used to describe this relationship. Using the topologies recovered from each phylogenetic method, we reconstructed the biogeographic history of Hyaenodonta using parsimony optimization (PO), likelihood optimization (LO), and Bayesian Binary Markov chain Monte Carlo (MCMC) to examine support for the Afro-Arabian origin of Hyaenodonta. Across all analyses, we found that Hyaenodonta most likely originated in Europe, rather than Afro-Arabia. The clade is estimated by tip-dating analysis to have undergone a rapid radiation in the Late Cretaceous and Paleocene; a radiation currently not documented by fossil evidence. During the Paleocene, lineages are reconstructed as dispersing to Asia, Afro-Arabia, and North America. The place of origin of Hyainailouroidea is likely Afro-Arabia according to the Bayesian topologies but it is ambiguous using parsimony. All topologies support the constituent clades–Hyainailourinae, Apterodontinae, and Teratodontinae–as Afro-Arabian and tip-dating estimates that each clade is established in Afro-Arabia by the middle Eocene.

     
    more » « less
  4. Abstract Two new Early Cretaceous (Aptian-Albian) species of fossil bennettitalean leaves are described from central Mongolia and assigned to the genus Nilssoniopteris . Nilssoniopteris tomentosa F.Herrera, G.Shi, Tsolmon, Ichinnorov, Takahashi, P.R.Crane, et Herend. sp. nov., isolated from bulk sediment samples collected for mesofossils in the Tevshiingovi Formation at the Tevshiin Govi opencast coal mine, is distinctive in having a dense, well-developed indumentum composed of branched, flattened multicellular trichomes on the abaxial leaf surface. This species provides the first direct evidence of complex multicellular trichomes in Bennettitales and adds to the evidence of leaf anatomical features in the group that were probably advantageous in increasing water use efficiency and/or perhaps had other functions such as deterring insect herbivory. Comparison with other well-preserved leaves of Bennettitales, including Nilssoniopteris shiveeovoensis F.Herrera, G.Shi, Tsolmon, Ichinnorov, Takahashi, P.R.Crane, et Herend. sp. nov., collected as hand specimens from the Khukhteeg Formation at the Shivee Ovoo locality, suggests that the trichome bases seen commonly on the abaxial cuticle of bennettitalean leaves bore trichomes with very low fossilization potential. In some cases these trichomes may have been shed as the leaves matured, but in other cases they probably decayed during diagenesis or were destroyed during the standard processes by which fossil leaf cuticles are prepared. 
    more » « less
  5. Eunotia is the largest and most diverse genus within the family Eunotiaceae, a primarily freshwater group of diatoms often found in dilute, acidic and humic-stained environments. Species in this genus are characterized by being asymmetric along their apical axis, symmetric about the transapical axis, and with a simple and reduced raphe system situated largely on the mantle and restricted to the apical ends of the valve. In addition, Eunotia taxa have one or more rimoportula per valve, usually close to the apex. Because of their reduced raphe system, coupled with the presence of rimoportulae, Eunotia and its relatives are often viewed as the oldest lineage of raphe-bearing diatoms. To date, the oldest remains of Eunotia species have been reported from the early to middle Eocene, including from the Giraffe Pipe locality, an ancient Eocene fossil site located in northern Canada near the Arctic Circle. Rocks from this site contain a large and diverse assemblage of Eunotia taxa. The purpose of this study is to begin to characterize this assemblage with descriptions of three new species, Eunotia giraffensis sp. nov., E. petasum sp. nov. and E. pseudonaegelii sp. nov. The new species, representing the longest specimens found at the Giraffe Pipe locality, each possess characteristics common to Eunotia making them easily assigned to this genus. Because the Eunotia lineage was well established by the early part of the Eocene, it is likely to be significantly older. 
    more » « less