skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Generating Natural Language Adversarial Examples
Deep neural networks (DNNs) are vulnera- ble to adversarial examples, perturbations to correctly classified examples which can cause the model to misclassify. In the image do- main, these perturbations are often virtually indistinguishable to human perception, caus- ing humans and state-of-the-art models to dis- agree. However, in the natural language do- main, small perturbations are clearly percep- tible, and the replacement of a single word can drastically alter the semantics of the doc- ument. Given these challenges, we use a black-box population-based optimization al- gorithm to generate semantically and syntac- tically similar adversarial examples that fool well-trained sentiment analysis and textual en- tailment models with success rates of 97% and 70%, respectively. We additionally demon- strate that 92.3% of the successful sentiment analysis adversarial examples are classified to their original label by 20 human annotators, and that the examples are perceptibly quite similar. Finally, we discuss an attempt to use adversarial training as a defense, but fail to yield improvement, demonstrating the strength and diversity of our adversarial examples. We hope our findings encourage researchers to pursue improving the robustness of DNNs in the natural language domain.  more » « less
Award ID(s):
1705135
PAR ID:
10112195
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing
Page Range / eLocation ID:
2890–2896
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    As deep neural networks (DNNs) achieve extraordi- nary performance in a wide range of tasks, testing their robust- ness under adversarial attacks becomes paramount. Adversarial attacks, also known as adversarial examples, are used to measure the robustness of DNNs and are generated by incorporating imperceptible perturbations into the input data with the intention of altering a DNN’s classification. In prior work in this area, most of the proposed optimization based methods employ gradient descent to find adversarial examples. In this paper, we present an innovative method which generates adversarial examples via convex programming. Our experiment results demonstrate that we can generate adversarial examples with lower distortion and higher transferability than the C&W attack, which is the current state-of-the-art adversarial attack method for DNNs. We achieve 100% attack success rate on both the original undefended models and the adversarially-trained models. Our distortions of the L∞ attack are respectively 31% and 18% lower than the C&W attack for the best case and average case on the CIFAR-10 data set. 
    more » « less
  2. Distinct scientific theories can make similar predictions. To adjudicate between theories, we must design experiments for which the theories make distinct predictions. Here we consider the problem of comparing deep neural networks as models of human visual recognition. To efficiently compare models’ ability to predict human responses, we synthesize controversial stimuli: images for which different models produce distinct responses. We applied this approach to two visual recognition tasks, handwritten digits (MNIST) and objects in small natural images (CIFAR-10). For each task, we synthesized controversial stimuli to maximize the disagreement among models which employed different architectures and recognition algorithms. Human subjects viewed hundreds of these stimuli, as well as natural examples, and judged the probability of presence of each digit/object category in each image. We quantified how accurately each model predicted the human judgments. The best-performing models were a generative analysis-by-synthesis model (based on variational autoencoders) for MNIST and a hybrid discriminative–generative joint energy model for CIFAR-10. These deep neural networks (DNNs), which model the distribution of images, performed better than purely discriminative DNNs, which learn only to map images to labels. None of the candidate models fully explained the human responses. Controversial stimuli generalize the concept of adversarial examples, obviating the need to assume a ground-truth model. Unlike natural images, controversial stimuli are not constrained to the stimulus distribution models are trained on, thus providing severe out-of-distribution tests that reveal the models’ inductive biases. Controversial stimuli therefore provide powerful probes of discrepancies between models and human perception. 
    more » « less
  3. Over recent years, devising classification algorithms that are robust to adversarial perturbations hasemerged as a challenging problem. In particular, deep neural nets (DNNs) seem to be susceptible tosmall imperceptible changes over test instances. However, the line of work inprovablerobustness,so far, has been focused oninformation theoreticrobustness, ruling out even theexistenceof anyadversarial examples. In this work, we study whether there is a hope to benefit fromalgorithmicnature of an attacker that searches for adversarial examples, and ask whether there isanylearning taskfor which it is possible to design classifiers that are only robust againstpolynomial-timeadversaries.Indeed, numerous cryptographic tasks (e.g. encryption of long messages) can only be secure againstcomputationally bounded adversaries, and are indeedimpossiblefor computationally unboundedattackers. Thus, it is natural to ask if the same strategy could help robust learning.We show that computational limitation of attackers can indeed be useful in robust learning bydemonstrating the possibility of a classifier for some learning task for which computational andinformation theoretic adversaries of bounded perturbations have very different power. Namely, whilecomputationally unbounded adversaries can attack successfully and find adversarial examples withsmall perturbation, polynomial time adversaries are unable to do so unless they can break standardcryptographic hardness assumptions. Our results, therefore, indicate that perhaps a similar approachto cryptography (relying on computational hardness) holds promise for achieving computationallyrobust machine learning. On the reverse directions, we also show that the existence of such learningtask in which computational robustness beats information theoretic robustness requires computationalhardness by implying (average-case) hardness o fNP. 
    more » « less
  4. Narrative data spans all disciplines and provides a coherent model of the world to the reader or viewer. Recent advancement in machine learning and Large Language Models (LLMs) have enable great strides in analyzing natural language. However, Large language models (LLMs) still struggle with complex narrative arcs as well as narratives containing conflicting information. Recent work indicates LLMs augmented with external knowledge bases can improve the accuracy and interpretability of the resulting models. In this work, we analyze the effectiveness of applying knowledge graphs (KGs) in understanding true-crime podcast data from both classical Natural Language Processing (NLP) and LLM approaches. We directly compare KG-augmented LLMs (KGLLMs) with classical methods for KG construction, topic modeling, and sentiment analysis. Additionally, the KGLLM allows us to query the knowledge base in natural language and test its ability to factually answer questions. We examine the robustness of the model to adversarial prompting in order to test the model's ability to deal with conflicting information. Finally, we apply classical methods to understand more subtle aspects of the text such as the use of hearsay and sentiment in narrative construction and propose future directions. Our results indicate that KGLLMs outperform LLMs on a variety of metrics, are more robust to adversarial prompts, and are more capable of summarizing the text into topics. 
    more » « less
  5. Defenses against adversarial examples, such as adversarial training, are typically tailored to a single perturbation type (e.g., small ℓ∞-noise). For other perturbations, these defenses offer no guarantees and, at times, even increase the model’s vulnerability. Our aim is to understand the reasons underlying this robustness trade-off, and to train models that are simultaneously robust to multiple perturbation types. We prove that a trade-off in robustness to different types of ℓp-bounded and spatial perturbations must exist in a natural and simple statistical setting. We corroborate our formal analysis by demonstrating similar robustness trade-offs on MNIST and CIFAR10. We propose new multi-perturbation adversarial training schemes, as well as an efficient attack for the ℓ1-norm, and use these to show that models trained against multiple attacks fail to achieve robustness competitive with that of models trained on each attack individually. In particular, we find that adversarial training with first-order ℓ∞, ℓ1 and ℓ2 attacks on MNIST achieves merely 50% robust accuracy, partly because of gradient-masking. Finally, we propose affine attacks that linearly interpolate between perturbation types and further degrade the accuracy of adversarially trained models. 
    more » « less