skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VirtSense: Virtualize Sensing through ARM TrustZone on Internet-of-Things
Internet-of-Things (IoTs) are becoming more and more popular in our life. IoT devices are generally designed for sensing or actuation purposes. However, the current sensing system on IoT devices lacks the understanding of sensing needs, which diminishes the sensing flexibility, isolation, and security when multiple sensing applications need to use sensor resources. In this work, we propose VirtSense, an ARM TrustZone based virtual sensing system, to provide each sensing application a virtual sensor instance, which further enables a safe, flexible and isolated sensing environment on the IoT devices. Our preliminary results show that VirtSense: 1) can provide virtual sensor instance for each sensing application so that the sensing needs of each application will be satisfied without affecting others; 2) is able to enforce access control policy even under an untrusted environment.  more » « less
Award ID(s):
1705135
PAR ID:
10112200
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 3rd Workshop on System Software for Trusted Execution (SysTEX '18)
Page Range / eLocation ID:
2 - 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-sensor IoT devices can gather different types of data by executing different sensing activities or tasks. Therefore, IoT applications are also becoming more complex in order to process multiple data types and provide a targeted response to the monitored phenomena. However, IoT devices which are usually resource-constrained still face energy challenges since using each of these sensors has an energy cost. Therefore, energy-efficient solutions are needed to extend the device lifetime while balancing the sensing data requirements of the IoT application. Cooperative monitoring is one approach for managing energy and involves reducing the duplication of sensing tasks between neighboring IoT devices. Setting up cooperative monitoring is a scheduling problem and is challenging in a distributed environment with resource-constrained IoT devices. In this work, we present our Distributed Token and Tier-based task Scheduler (DTTS) for a multi-sensor IoT network. Our algorithm divides the monitoring period (5 min epochs) into a set of non-overlapping intervals called tiers and determines the start deadlines for the task at each IoT device. Then to minimize temporal sensing overlap, DTTS distributes task executions throughout the epoch and uses tokens to share minimal information between IoT devices. Tasks with earlier start deadlines are scheduled in earlier tiers while tasks with later start deadlines are scheduled in later tiers. Evaluating our algorithm against a simple round-robin scheduler shows that the DTTS algorithm always schedules tasks before their start deadline expires. 
    more » « less
  2. Internet of Things (IoT) devices are common in students’ everyday lives, but connecting these devices to a programming environment for educational use is not always straightforward. This paper presents a framework, IoTScape, for connecting IoT devices to an online block-based programming environment. This system automatically provides both a novice-friendly interface and more advanced tools integrating cybersecurity concepts. By allowing new device types to easily be added to the system, a more diverse set of curricula is possible, ideally attracting more students who may not find the existing curricula engaging. Examples are provided of IoT devices used with this system, both physical and virtual, connected to NetsBlox through this platform, along with potential pedagogical uses of these devices. 
    more » « less
  3. IoT devices used in various applications, such as monitoring agricultural soil moisture, or urban air quality assessment, are typically battery-operated and energy-constrained. We develop a lightweight and distributed cooperative sensing scheme that provides energy-efficient sensing of an area by reducing spatio-temporal overlaps in the coverage using a multi-sensor IoT network. Our “Sensing Together” solution includes two algorithms: Distributed Task Adaptation (DTA) and Distributed Block Scheduler (DBS), which coordinate the sensing operations of the IoT network through information shared using a distributed “token passing” protocol. DTA adapts the sensing rates from their “raw” values (optimized for each IoT device independently) to minimize spatial redundancy in coverage, while ensuring that a desired coverage threshold is met at all points in the covered area. DBS then schedules task execution times across all IoT devices in a distributed manner to minimize temporal overlap. On-device evaluation shows a small token size and execution times of less than 0.6s on average while simulations show average energy savings of 5% per IoT device under various weather conditions. Moreover, when devices had more significant coverage overlaps, energy savings exceeded 30% thanks to cooperative sensing. In simulations of larger networks, energy savings range on average between 3.34% and 38.53%, depending on weather conditions. Our solutions consistently demonstrate near-optimal performance under various scenarios, showcasing their capability to efficiently reduce temporal overlap during sensing task scheduling. 
    more » « less
  4. Recent advances in Internet of Things (IoT) technologies have sparked significant interest toward developing learning-based sensing applications on embedded edge devices. These efforts, however, are being challenged by the complexities of adapting to unforeseen conditions in an open-world environment, mainly due to the intensive computational and energy demands exceeding the capabilities of edge devices. In this article, we propose OpenSense, an open-world time-series sensing framework for making inferences from time-series sensor data and achieving incremental learning on an embedded edge device with limited resources. The proposed framework is able to achieve two essential tasks, inference and incremental learning, eliminating the necessity for powerful cloud servers. In addition, to secure enough time for incremental learning and reduce energy consumption, we need to schedule sensing activities without missing any events in the environment. Therefore, we propose two dynamic sensor scheduling techniques: 1) a class-level period assignment scheduler that finds an appropriate sensing period for each inferred class and 2) a Q-learning-based scheduler that dynamically determines the sensing interval for each classification moment by learning the patterns of event classes. With this framework, we discuss the design choices made to ensure satisfactory learning performance and efficient resource usage. Experimental results demonstrate the ability of the system to incrementally adapt to unforeseen conditions and to efficiently schedule to run on a resource-constrained device. 
    more » « less
  5. The security of Internet-of-Things (IoT) devices in the residential environment is important due to their widespread presence in homes and their sensing and actuation capabilities. However, securing IoT devices is challenging due to their varied designs, deployment longevity, multiple manufacturers, and potentially limited availability of long-term firmware updates. Attackers have exploited this complexity by specifically targeting IoT devices, with some recent high-profile cases affecting millions of devices. In this work, we explore access control mechanisms that tightly constrain access to devices at the residential router, with the goal of precluding access that is inconsistent with legitimate users' goals. Since many residential IoT devices are controlled via applications on smartphones, we combine application sensors on phones with sensors at residential routers to analyze workflows. We construct stateful filters at residential routers that can require user actions within a registered smartphone to enable network access to an IoT device. In doing so, we constrain network packets only to those that are consistent with the user's actions. In our experiments, we successfully identified 100% of malicious traffic while correctly allowing more than 98% of legitimate network traffic. The approach works across device types and manufacturers with straightforward API and state machine construction for each new device workflow. 
    more » « less