skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DISPERSE: A Decentralized Architecture for Content Replication Resilient to Node Failures
This paper introduces DISPERSE, a distributed scalable architecture for delivery of content and services that provides resilience against node failure through location-independent storage and replication of content. Current content delivery networks (CDNs) have, at least to some degree, a centralized structure thus susceptible to a single point of failure. DISPERSE addresses this limitation by implementing a fully de-centralized structure. DISPERSE is a two-layer architecture: the first layer (front-end layer) exposes services (e.g., Web, SFTP) to clients; the second layer (back-end layer) provides reliable distributed storage of content and application state. Content in DISPERSE's back-end layer is stored and exchanged as Named Data Network (NDN) content objects. This allows DISPERSE to implement fine-grained, location-independent, fully decentralized content replication mechanisms. We validate the performance of DISPERSE under two node failure scenarios. In the first scenario, content can be stored in any DISPERSE node, and all nodes are equally likely to fail. In this scenario, we use non-linear optimization techniques to determine the optimal number of content copies under availability and latency constraints. In the second scenario, different nodes fail with different probabilities, and content is stored in nodes according to its value, node failure probability, and resource availability. This scenario is addressed as an instance of the minimum cost flow problem. Our results show that DISPERSE reduces the failure of content retrieval by five orders of magnitude compared to common CDN implementations, without significantly increasing content retrieval delay. Further, numerical results show that DISPERSE improves content availability by a factor of 1.3x-2.3x when deploying the minimum cost flow algorithm.  more » « less
Award ID(s):
1814846
PAR ID:
10112524
Author(s) / Creator(s):
Date Published:
Journal Name:
IEEE eTransactions on network and service management
ISSN:
1932-4537
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Time-critical applications, such as virtual reality and cyber-physical systems, require not only low end-to-end latency, but also the timely delivery of information. While high-speed Ethernet adoption has reduced interconnect fabric latency, bottlenecks persist in data storage, retrieval, and processing. This work examines status updating systems where sources generate time-stamped updates that are stored in memory, and readers fulfill client requests by accessing these stored updates. Clients then utilize the retrieved updates for further computations. The asynchronous interaction between writers and readers presents challenges, including: (i) the potential for readers to encounter stale updates due to temporal disparities between the writing and reading processes, (ii) the necessity to synchronize writers and readers to prevent race conditions, and (iii) the imperative for clients to process and deliver updates within strict temporal constraints. In the first part, we study optimal reading policies in both discrete and continuous time domains to minimize the Age of Information (AoI) of source updates at the client. One of the main contributions of this part includes showing that lazy reading is timely. In the second part, we analyze the impact of synchronization primitives on update timeliness in a packet forwarding scenario, where location updates are written to a shared routing table, and application updates read from it to ensure correct delivery. Our theoretical and experimental results show that using a lock-based primitive is suitable for timely application update delivery at higher location update rates, while a lock-free mechanism is more effective at lower rates. The final part focuses on optimizing update processing when updates require multiple sequential computational steps. We compare the age performance across a multitude of pipelined and parallel server models and characterize the age-power trade-off in these models. Additionally, our analysis reveals that synchronous sequential processing is more conducive to timely update processing than asynchronous methods, and that parallel processing outperforms pipeline services in terms of AoI. 
    more » « less
  2. With the emergence of IoT applications, 5G, and edge computing, network resource allocation has shifted toward the edge, bringing services closer to the end users. These applications often require communication with the core network for purposes that include cloud storage, compute offloading, 5G-and-Beyond transport communication between centralized unit (CU), distributed unit (DU) and core network, centralized network monitoring and management, etc. As the number of these services increases, efficient and reliable connectivity between the edge and core networks is of the essence. Wavelength Division Multiplexing (WDM) is a well-suited technology for transferring large amounts of data by simultaneously transmitting several wavelength-multiplexed data streams over each single fiber optics link. WDM is the technology of choice in mid-haul and long-haul transmission networks, including edge-to-core networks, to offer increased transport capacity. Optical networks are prone to failures of components such as network fiber links, sites, and transmission ports. A single network element failure alone can cause significant traffic loss due to the disruption of many active data flows. Thus, fault-tolerant and reliable network designs remain a priority. The architecture called “dual-hub and dual-spoke” is often used in metro area networks (MANs). A dual-hub, or in general a multi-hub network, consists of a set of designated destination nodes (hubs) in which the data traffic from all other nodes (the peripherals) should be directed to the hubs. Multiple hubs offer redundant connectivity to and from the core or wide area network (WAN) through geographical diversity. The routing of the connections (also known as lightpaths) between the peripheral node and the hubs has to be carefully computed to maximize path diversity across the edge-to-core network. This means that whenever possible the established redundant lightpaths must not contain a common Shared Risk Link Group (SRLG). An algorithm is proposed to compute the most reliable set of SRLG disjoint shortest paths from any peripheral to all hubs. The proposed algorithm can also be used to evaluate the overall edge-to-core network reliability quantified through a newly introduced figure of merit. 
    more » « less
  3. The continuous rise of the blockchain technology is moving various information systems towards decentralization. Blockchain-based decentralized storage networks (DSNs) offer significantly higher privacy and lower costs to customers compared with centralized cloud storage associated with specific vendors. Coding is required to retrieve data stored on failing components. While coding solutions for centralized storage have been intensely studied, those for DSNs have not yet been discussed. In this paper, we propose a coding scheme where each node receives extra protection through cooperation with nodes in its neighborhood in a heterogeneous DSN with any given topology. Our scheme can achieve faster recovery speed compared with existing network coding methods, and can correct more erasure patterns compared with our previous work. 
    more » « less
  4. Network connectivity, i.e., the reachability of any network node from all other nodes, is often considered as the default network survivability metric against failures. However, in the case of a large-scale disaster disconnecting multiple network components, network connectivity may not be achievable. On the other hand, with the shifting service paradigm towards the cloud in today’s networks, most services can still be provided as long as at least a content replica is available in all disconnected network partitions. As a result, the concept of content connectivity has been introduced as a new network survivability metric under a large-scale disaster. Content connectivity is defined as the reachability of content from every node in a network under a specific failure scenario. In this work, we investigate how to ensure content connectivity in optical metro networks. We derive necessary and sufficient conditions and develop what we believe to be a novel mathematical formulation to map a virtual network over a physical network such that content connectivity for the virtual network is ensured against multiple link failures in the physical network. In our numerical results, obtained under various network settings, we compare the performance of mapping with content connectivity and network connectivity and show that mapping with content connectivity can guarantee higher survivability, lower network bandwidth utilization, and significant improvement of service availability. 
    more » « less
  5. We consider whether distributed subgradient methods can achieve a linear speedup over a centralized subgradient method. While it might be hoped that distributed network of n nodes that can compute n times more subgradients in parallel compared to a single node might, as a result, be n times faster, existing bounds for distributed optimization methods are often consistent with a slowdown rather than speedup compared to a single node. We show that a distributed subgradient method has this “linear speedup” property when using a class of square-summable-but-not-summable step-sizes which include 1/t^β when β ∈ (1/2,1); for such step-sizes, we show that after a transient period whose size depends on the spectral gap of the network, the method achieves a performance guarantee that does not depend on the network or the number of nodes. We also show that the same method can fail to have this “asymptotic network independence” property under the optimally decaying step-size 1/t^{1/2} and, as a consequence, can fail to provide a linear speedup compared to a single node with 1/t^{1/2} step-size. 
    more » « less