skip to main content


Title: A Two Decadal (1993–2012) Numerical Assessment of Sediment Dynamics in the Northern Gulf of Mexico
We adapted the coupled ocean-sediment transport model to the northern Gulf of Mexico to examine sediment dynamics on seasonal-to-decadal time scales as well as its response to decreased fluvial inputs from the Mississippi-Atchafalaya River. Sediment transport on the shelf exhibited contrasting conditions in a year, with strong westward transport in spring, fall, and winter, and relatively weak eastward transport in summer. Sedimentation rate varied from almost zero on the open shelf to more than 10 cm/year near river mouths. A phase shift in river discharge was detected in 1999 and was associated with the El Niño-Southern Oscillation (ENSO) event, after which, water and sediment fluxes decreased by ~20% and ~40%, respectively. Two sensitivity tests were carried out to examine the response of sediment dynamics to high and low river discharge, respectively. With a decreased fluvial supply, sediment flux and sedimentation rate were largely reduced in areas proximal to the deltas, which might accelerate the land loss in down-coast bays and estuaries. The results of two sensitivity tests indicated the decreased river discharge would largely affect sediment balance in waters around the delta. The impact from decreased fluvial input was minimum on the sandy shoals ~100 km west of the Mississippi Delta, where deposition of fluvial sediments was highly affected by winds.  more » « less
Award ID(s):
1636052
NSF-PAR ID:
10112560
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Water
Volume:
11
Issue:
5
ISSN:
2073-4441
Page Range / eLocation ID:
938
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Bedload is notoriously challenging to measure and model; its dynamics, therefore, remains largely unknown in most fluvial systems worldwide. We present results from a global scale bedload flux model as part of the WBMsed modeling framework that well predict the distribution of water discharge, suspended sediment and bedload. The sensitivity of bedload predictions to river slope, particle size, discharge, river width, and suspended sediment were analyzed, showing the model to be most responsive to spatial dynamics in river discharge and slope. The relationship between bedload and total sediment flux is analyzed globally, and for representative longitudinal river profiles (Amazon, Mississippi, and Lena Rivers). The results show that while the proportion of bedload decreases from headwaters to the coasts, there is considerable variability between basins and along river corridors. The topographic and hydrological longitudinal profiles of rivers are shown to be the key drivers of bedload trends, with fluctuations in slope controlling its more local dynamics. Estimates of water and sediment fluxes to global oceans from 2,067 largest river outlets (draining 67% of the global continental area) are provided. Estimated water discharge at 30,579 km3/y corresponds well to past estimates; however, sediment flux is higher. Total global particulate load of 17.8 Gt/y is delivered to global oceans, 14.8 Gt/y as washload, 1.1 Gt/y as bedload, and 2.6 Gt/y as suspended bed material. The largest 25 rivers are predicted to transport more than half of the total sediment flux to global oceans.

     
    more » « less
  2. Deltaic islands are distinct hydro-environmental zones with global significance in food security, biodiversity conservation, and fishery industry. These islands are the fundamental building blocks of many river deltas. However, deltaic islands are facing severe challenges due to intensive anthropogenic activities, sea level rise, and climate change. In this study, dynamic changes of deltaic islands in Wax Lake Delta (WLD) and Atchafalaya Delta (AD), part of the Atchafalaya River Delta Complex (ARDC) in Louisiana, USA, were quantified based on remote sensing images from 1991 to 2019 through a machine learning method. Results indicate a significant increase in deltaic islands area for the whole ARDC at a rate of 1.29 km2/yr, with local expansion rates of 0.60 km2/yr for WLD and 0.69 km2/yr for AD. All three parts of the WLD naturally prograded seaward, with the western part (WP) and central part (CP) expanding southwestward to the sea, while the eastern part (EP) prograding southeastwards. Differently from WLD, the three parts of AD irregularly expanded seaward under the impacts of anthropogenic activities. The WP and CP of the AD expanded respectively northwestwards and southwestwards, while the EP remained stable. Different drivers dominate the growth of deltaic islands in the WLD and AD. Specifically, fluvial suspended sediment discharge and peak flow events were responsible for the shift in the spatial evolution of WLD, while dredging and sediment disposal contributed to the expansion of AD. Tropical storms with different intensity and landing locations caused short-term deltaic island erosion or expansion. Tropical storms mainly generated erosion on the deltaic islands of the WLD, while causing transient erosion or siltation on the deltaic islands of the AD. In addition, high-intensity hurricanes that made landfall east of the deltas caused more erosion in the AD. Finally, sea level rise, at the current rate of 8.17 mm/yr, will not pose a threat to the deltaic island of WLD, while the eastern part of AD may be at risk of drowning. This study recognizes the complexity of factors influencing the growth of deltaic islands, suggesting that quantitative studies on the deltaic island extent are of critical for the restoration and sustainable management of the Mississippi River Delta and other deltas around the world. 
    more » « less
  3. Abstract River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p\0.001), resulting in migration rates of 218 m/year (0.22 km/year) and\0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L). 
    more » « less
  4. Abstract

    Marsh vegetation, a definitive component of delta ecosystems, has a strong effect on sediment retention and land-building, controlling both how much sediment can be delivered to and how much is retained by the marsh. An understanding of how vegetation influences these processes would improve the restoration and management of marshes. We use a random displacement model to simulate sediment transport, deposition, and resuspension within a marsh. As vegetation density increases, velocity declines, which reduces sediment supply to the marsh, but also reduces resuspension, which enhances sediment retention within the marsh. The competing trends of supply and retention produce a nonlinear relationship between sedimentation and vegetation density, such that an intermediate density yields the maximum sedimentation. Two patterns of sedimentation spatial distribution emerge in the simulation, and the exponential distribution only occurs when resuspension is absent. With resuspension, sediment is delivered farther into the marsh and in a uniform distribution. The model was validated with field observations of sedimentation response to seasonal variation in vegetation density observed in a marsh within the Mississippi River Delta.

     
    more » « less
  5. Abstract

    Lake‐based studies can provide seasonal‐ to millennial‐scale records of sediment yield to improve our understanding of catchment‐scale sediment transfer and complement shorter fluvial‐based sediment transport studies. In this study, sediment accumulation rates at 40 coring locations in Lake Peters, Brooks Range, Alaska, over ca. 42 years, calculated using fallout radionuclides and sediment density patterns, were spatially modelled based on distance from the primary inflow and lake water depth. We estimated mean interdecadal specific sediment yield (Mg km−2 year−1) using the spatially modelled sediment accumulation rates and compared that result to fluvial‐based sediment delivery for 2015–2016 open‐channel seasons, as well as to yields reported for other Arctic catchments. Using the lake‐based method, mean yield to Lake Peters between ca. 1973 and 2015 was 52 ± 12 Mg km−2 year−1, which is comparable with fluvial‐based modelling results of 33 (20–60) Mg km−2 year−1in 2015 and 79 (50–140) Mg km−2 year−1in 2016 (95% confidence intervals), respectively. Although 2016 was a year of above average sedimentation, the last extreme depositional event probably occurred between ca. 1970 and 1976 when a basal layer of fine sand was deposited in a broadly distributed, relatively thick and coarse bed, which we used for lake‐wide correlation. The dual lacustrine–fluvial method approach permits study of within‐lake and catchment‐scale processes. Within Lake Peters, sedimentation patterns show decreasing fluxes down‐lake, sediment bypassing near the primary inflow, the influence of secondary inflows and littoral redistribution, and a focusing effect in the deep proximal basin. At the watershed scale, sediment yield is largely driven by intense summer rainfall and strong seasonal hydroclimatic variability. This research informs paleo‐environmental reconstruction and environmental system modelling in Arctic lake catchments.

     
    more » « less