Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of amore »
Creating a Backscattering Side Channel to Enable Detection of Dormant Hardware Trojans
Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of a dormant HT in 100% of the HT-afflicted measurements for a number of different HTs, while producing no false positives in HT free measurements. Furthermore, additional experiments are conducted to compare the backscattering-based detection to one that uses the traditional EM-emanation-based side channel. These results show that backscattering-based detection outperforms the EM side channel, confirm that dormant HTs are much more difficult for detection than HTs that have been activated, and show how detection is affected by changing the HT’s size and physical location on the IC.
- Award ID(s):
- 1740962
- Publication Date:
- NSF-PAR ID:
- 10112671
- Journal Name:
- IEEE transactions on very large scale integration (VLSI) systems
- Volume:
- 27
- Issue:
- 7
- Page Range or eLocation-ID:
- 1561-1574
- ISSN:
- 1557-9999
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The security of manycore systems has become increasingly critical. In system-on-chips (SoCs), Hardware Trojans (HTs) manipulate the functionalities of the routing components to saturate the on-chip network, degrade performance, and result in the leakage of sensitive data. Existing HT detection techniques, including runtime monitoring and state-of-the-art learning-based methods, are unable to timely and accurately identify the implanted HTs, due to the increasingly dynamic and complex nature of on-chip communication behaviors. We propose AGAPE, a novel Generative Adversarial Network (GAN)-based anomaly detection and mitigation method against HTs for secured on-chip communication. AGAPE learns the distribution of the multivariate time series ofmore »
-
With the outsourcing of design flow, ensuring the security and trustworthiness of integrated circuits has become more challenging. Among the security threats, IC counterfeiting and recycled ICs have received a lot of attention due to their inferior quality, and in turn, their negative impact on the reliability and security of the underlying devices. Detecting recycled ICs is challenging due to the effect of process variations and process drift occurring during the chip fabrication. Moreover, relying on a golden chip as a basis for comparison is not always feasible. Accordingly, this paper presents a recycled IC detection scheme based on delaymore »
-
Existing analog-signal side-channels, such as EM emanations, are a consequence of current-flow changes that are dependent on activity inside an electronic circuits. In this paper, we introduce a new class of side-channels that is a consequence of impedance changes in switching circuits, and we refer to it as an impedance-based side-channel. One example of such a side-channel is when digital logic activity causes incoming EM signals to be modulated as they are reflected (backscattered), at frequencies that depend on both the incoming EM signal and the circuit activity. This can cause EM interference or leakage of sensitive information, but itmore »
-
System-on-Chips (SoCs) are designed using different Intellectual Property (IP) blocks from multiple third-party vendors to reduce design cost while meeting aggressive time-to-market constraints. Designing trustworthy SoCs need to address the increasing concerns related to supply-chain security vulnerabilities. Malicious implants on IPs, such as Hardware Trojans (HTs) are one of the significant security threats in designing trustworthy SoCs. It is a major challenge to detect Trojans in complex multi-processor SoCs using conventional pre- and post-silicon validation methodologies. Packet-based Network-on-Chip (NoC) is a widely used solution for on-chip communication between IPs in complex SoCs. The focus of this paper is to enablemore »