skip to main content


Search for: All records

Award ID contains: 1740962

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper presents the effect of surface roughness on the performance of the 3D printed near field focused THz Cassegrain antenna configuration. It is found that the roughness affects the focal plane parameters. The nearfield directivity is reduced by ~ 3.5 dB for 60 µm rough surface, there is only a small effect on the focus spot width. A smoothing process, which reduces the conductive coating surface roughness to 4 µm, is also described. The roughness loss is less than 0.1 dB at 300GHz. 
    more » « less
  2. Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of a dormant HT in 100% of the HT-afflicted measurements for a number of different HTs, while producing no false positives in HT free measurements. Furthermore, additional experiments are conducted to compare the backscattering-based detection to one that uses the traditional EM-emanation-based side channel. These results show that backscattering-based detection outperforms the EM side channel, confirm that dormant HTs are much more difficult for detection than HTs that have been activated, and show how detection is affected by changing the HT’s size and physical location on the IC. 
    more » « less
  3. Thispaperdescribesanewphysicalsidechannel,i.e. the backscattering side channel, that is created by transmitting a signal toward the IC, where the internal impedance changes caused by on-chip switching activity modulate the signal that is backscattered (reflected) from the IC. To demonstrate how this new side-channel can be used to detect small changes in circuit impedances, we propose a new method for nondestructively detecting hardware Trojans (HTs) from outside of the chip. We experimentally confirm, using measurements on one physical instance for training and nine other physical instances for testing, that the new side-channel, when combined with an HT detection method, allows detection of a dormant HT in 100% of the HT-afflicted measurements for a number of different HTs, while producing no false positives in HT free measurements. Furthermore, additional experiments are conducted to compare the backscattering-based detection to one that uses the traditional EM-emanation-based side channel. These results show that backscattering-based detection outperforms the EM side channel, confirm that dormant HTs are much more difficult for detection than HTs that have been activated, and show how detection is affected by changing the HT’s size and physical location on the IC. 
    more » « less
  4. Existing analog-signal side-channels, such as EM emanations, are a consequence of current-flow changes that are dependent on activity inside an electronic circuits. In this paper, we introduce a new class of side-channels that is a consequence of impedance changes in switching circuits, and we refer to it as an impedance-based side-channel. One example of such a side-channel is when digital logic activity causes incoming EM signals to be modulated as they are reflected (backscattered), at frequencies that depend on both the incoming EM signal and the circuit activity. This can cause EM interference or leakage of sensitive information, but it can also be leveraged for RFID tag design. In this paper, we first introduce a new class of side-channels that is a consequence of impedance differences in switching circuits, and we refer to it as an impedance-based side-channel. Then, we demonstrate that the impedance difference between transistor gates in the high-state and in the low-state changes the radar cross section (RCS) and modulates the backscattered signal. Furthermore, we have investigated the possibility of implementing the proposed RFID on ASIC for signal enhancement. Finally, we propose a digital circuit that can be used as a semi-passive RFID tag. To illustrate the adaptability of the proposed RFID, we have designed a variety of RFID applications across carrier frequencies at 5.8 GHz, 17.46 GHz, and 26.5 GHz to demonstrate flexible carrier frequency selection and bit configuration. 
    more » « less
  5. This paper presents the measurement setup and the investigation on the backscatter side-channel signal detected and received, at 300Ghz, from the activated FPGA board. First, the ellipsoidal reflector, used as an incident source, with a spot size of 0.7mm is designed and fabricated. Next, a region on the FPGA chip is divided geometrically into various cells with cell dimensions corresponding to reflector spot size. Finally, it was shown that the backscatter side-channel signal can be detected by a diagonal horn antenna placed at a distance from the FPGA board. The received signal behavior is investigated in terms of absolute signal strength, measured noise power level and signal to noise ratio. This provides deeper insight into the detected backscatter side-channel emanating for the FPGA board. 
    more » « less