skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spatiotemporal control over the host–guest characteristics of a stimulus-triggerable trifunctional polymer assembly
The positional effect of stimuli-responsive units in tri-component copolymer vesicles is studied to explore variations in the host–guest properties of the assembly. We study this by placing pH-responsive diisopropylaminoethyl moieties in three distinct locations of a block copolymer assembly. In two of the three variations, these functionalities were randomly distributed in the hydrophobic or the hydrophilic domains of an amphiphilic diblock copolymer. In a third variation, this responsive functionality was incorporated as the middle block in a triblock copolymer. The results reveal that the solvent exposure of the responsive units holds the key for controlling the rate of molecular release from these polymer vesicles. The study also shows that equilibrium changes in the morphology of an assembly are not good indicators of the responsive host–guest properties of a polymer assembly.  more » « less
Award ID(s):
1740597
PAR ID:
10112697
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
10
Issue:
12
ISSN:
1759-9954
Page Range / eLocation ID:
1423 to 1430
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The morphology of self-assembled block copolymer aggregates is highly dependent on the relative volume fraction of the hydrophobic block. Thus, a dramatic change in the volume fraction of the hydrophobic block can elicit on-demand morphological transitions. Herein, a novel hydrophobic monomer containing a photolabile nitrobenzyl (Nb) protecting group was synthesized and incorporated into a block copolymer with poly(ethylene glycol) methacrylate. This motif allows for the hydrophobic volume fraction of the amphiphilic block copolymer to be dramatically reduced in situ to induce a morphological transition upon irradiation with UV light. Two amphiphilic block copolymers, Nb 94 and Nb 176, with hydrophobic weight fractions of 80% and 86%, respectively, were synthesized and their self-assembly in water studied. Nb 94 assembled into vesicles with R h = 235 nm and underwent a morphological transition after 21 minutes of UV irradiation to spherical micelles with R h = 27 nm, determined by dynamic light scattering and confirmed by transmission electron microscopy. At intermediate irradiation times (14–20 min), Nb 94 vesicles swelled to a larger size, but underwent a morphological transition over the course of hours or days, depending on the exact irradiation time. Nb 176 assembled into large compound vesicles with a hydrodynamic radius ( R h ) of 973 nm, as determined by dynamic light scattering (DLS), which decreased to ca. 700 nm after 300 minutes of UV irradiation with no apparent morphological transition. This study elucidates the mechanism and kinetics of the morphological transitions of block copolymer assemblies induced by a change in the hydrophobic volume fraction of the polymer. 
    more » « less
  2. Abstract The effect of vortex‐induced mechanical stresses on the fluorescent properties of dye‐containing poly(ethylene glycol)‐block‐poly(lactic acid) (PEG‐b‐PLA) block copolymer micelles has been investigated. PEG‐b‐PLA block copolymer micelles containing fluorescent dyes, 3,3′‐dioctadecyloxacarbocyanine perchlorate (DiO) and/or 1,1′‐dioctadecyl‐3,3,3′,3′‐tetramethylindocarbocyanine perchlorate (DiI), are prepared by a simple one‐step procedure that involves the self‐assembly of block copolymers and spontaneous incorporation of hydrophobic dyes into the core of the micelles. Upon vortexing, the micelle dispersion samples showed a decrease in fluorescence intensity in a rotational speed‐ and time‐dependent manner. The results demonstrated that the vortexing can alter the fluorescent properties of the dye‐containing PEG‐b‐PLA block copolymer micelle dispersion samples, suggesting the potential utility of block copolymer micelles as a mechanical stress‐responsive nanomaterial. 
    more » « less
  3. null (Ed.)
    Porous organic polymers (POPs) incorporating macrocyclic units have been investigated in recent years in an effort to transfer macrocycles' intrinsic host–guest properties onto the porous networks to achieve complex separations. In this regard, highly interesting building blocks are presented by the family of cyclotetrabenzoin macrocycles with rigid, well-defined, electron-deficient cavities. This macrocycle shows high affinity towards linear guest molecules such as carbon dioxide, thus offering an ideal building block for the synthesis of CO2-philic POPs. Herein, we report the synthesis of a POP through the condensation reaction between cyclotetrabenzil and 1,2,4,5-tetraaminobenzene under ionothermal conditions using the eutectic zinc chloride/sodium chloride/potassium chloride salt mixture at 250 °C. Notably, following the condensation reaction, the macrocycle favors three-dimensional (3D) growth rather than a two-dimensional one while retaining the cavity. The resulting polymer, named 3D-mPOP, showed a highly microporous structure with a BET surface area of 1142 m2 g−1 and a high carbon dioxide affinity with a binding enthalpy of 39 kJ mol−1. Moreover, 3D-mPOP showed very high selectivity for carbon dioxide in carbon dioxide/methane and carbon dioxide/nitrogen mixtures. 
    more » « less
  4. Protein vesicles made from bioactive proteins have potential value in drug delivery, biocatalysis, and as artificial cells. As the proteins are produced recombinantly, the ability to precisely tune the protein sequence provides control not possible with polymeric vesicles. The tunability and biocompatibility motivated this work to develop protein vesicles using rationally designed protein building blocks to investigate how protein sequence influences vesicle self-assembly and properties. We have reported an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) and functional, globular proteins fused to a glutamate-rich leucine zipper (ZE) that self-assemble into protein vesicles when warmed from 4 to 25 °C due to the hydrophobic transition of ELP. Previously, we demonstrated the ability to tune vesicle properties by changing protein and salt concentration, ZE:ZR ratio, and warming rate. However, there is a limit to the properties that can be achieved via assembly conditions. In order to access a wider range of vesicle diameter and stability profiles, this work investigated how modifiying the hydrophobicity and length of the ELP sequence influenced self-assembly and the final properties of protein vesicles using mCherry as a model globular protein. The results showed that both transition temperature and diameter of protein vesicles were inversely correlated to the ELP guest residue hydrophobicity and the number of ELP pentapeptide repeats. Additionally, sequence manipulation enabled assembly of vesicles with properties not accessible by changes to assembly conditions. For example, introduction of tyrosine at 5 guest residue positions in ELP enabled formation of nanoscale vesicles stable at physiological salt concentration. This work yields design guidelines for modifying the ELP sequence to manipulate protein vesicle transition temperature, size and stability to achieve desired properties for particular biofunctional applications. 
    more » « less
  5. Living systems are composed of a select number of biopolymers and minerals yet exhibit an immense diversity in materials properties. The wide-ranging characteristics, such as enhanced mechanical properties of skin and bone, or responsive optical properties derived from structural coloration, are a result of the multiscale, hierarchical structure of the materials. The fields of materials and polymer chemistry have leveraged equilibrium concepts in an effort to mimic the structure complex materials seen in nature. However, realizing the remarkable properties in natural systems requires moving beyond an equilibrium perspective. An alternative method to create materials with multiscale structures is to approach the issue from a kinetic perspective and utilize chemical processes to drive phase transitions. This Account features an active area of research in our group, reaction-induced phase transitions (RIPT), which uses chemical reactions such as polymerizations to induce structural changes in soft material systems. Depending on the type of phase transition (e.g., microphase versus macrophase separation), the resulting change in state will occur at different length scales (e.g., nm – μm), thus dictating the structure of the material. For example, the in situ formation of either a block copolymer or a homopolymer initially in a monomer mixture during a polymerization will drive nanoscale or macroscale transitions, respectively. Specifically, three different examples utilizing reaction-driven phase changes will be discussed: 1) in situ polymer grafting from block copolymers, 2) multiscale polymer nanocomposites, and 3) Lewis adduct-driven phase transitions. All three areas highlight how chemical changes via polymerizations or specific chemical binding result in phase transitions that lead to nanostructural and multiscale changes. Harnessing kinetic chemical processes to promote and control material structure, as opposed to organizing pre-synthesized molecules, polymers, or nanoparticles within a thermodynamic framework, is a growing area of interest. Trapping nonequilibrium states in polymer materials has been primarily focused from a polymer chain conformation viewpoint in which synthesized polymers are subjected to different thermal and processing conditions. The impact of reaction kinetics and polymerization rate on final polymer material structure is starting to be recognized as a new way to access different morphologies not available through thermodynamic means. Furthermore, kinetic control of polymer material structure is not specific to polymerizations and encompasses any chemical reaction that induce morphology transitions. Kinetically driven processes to dictate material structure directly impact a broad range of areas including separation membranes, biomolecular condensates, cell mobility, and the self-assembly of polymers and colloids. Advancing polymer material syntheses using kinetic principles such as RIPT opens new possibilities for dictating material structure and properties beyond what is currently available with traditional self-assembly techniques. 
    more » « less