Homomorphic encryption (HE) algorithms, particularly the Cheon-Kim-Kim-Song (CKKS) scheme, offer significant potential for secure computation on encrypted data, making them valuable for privacy-preserving machine learning. However, high latency in large integer operations in the CKKS algorithm hinders the processing of large datasets and complex computations. This paper proposes a novel strategy that combines lossless data compression techniques with the parallel processing power of graphics processing units to address these challenges. Our approach demonstrably reduces data size by 90% and achieves significant speedups of up to 100 times compared to conventional approaches. This method ensures data confidentiality while mitigating performance bottlenecks in CKKS-based computations, paving the way for more efficient and scalable HE applications.
more »
« less
Near-Data Acceleration of Privacy-Preserving Biomarker Search with 3D-Stacked Memory
Homomorphic encryption is a promising technology for enabling various privacy-preserving applications such as secure biomarker search. However, current implementations are not practical due to large performance overheads. A homomorphic encryption scheme has recently been proposed that allows bitwise comparison without the computationally-intensive multiplication and bootstrapping operations. Even so, this scheme still suffers from memory-bound performance bottleneck due to large ciphertext expansion. In this work, we propose HEGA, a near-data processing architecture that leverages this scheme with 3D-stacked memory to accelerate privacy-preserving biomarker search. We observe that homomorphic encryption-based search, like other emerging applications, can greatly benefit from the large throughput, capacity, and energy savings of 3D-stacked memory-based near-data processing architectures. Our near-data acceleration solution can speed up biomarker search by 6.3× with 5.7× energy savings compared to an 8-core Intel Xeon processor.
more »
« less
- Award ID(s):
- 1740352
- PAR ID:
- 10113206
- Date Published:
- Journal Name:
- 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE)
- Page Range / eLocation ID:
- 800 to 805
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the past decade, we have witnessed an exponential growth of deep learning models, platforms, and applications. While existing DL applications and Machine Learning as a service (MLaaS) frameworks assume fully trusted models, the need for privacy-preserving DNN evaluation arises. In a secure multi-party computation scenario, both the model and the data are considered proprietary, i.e., the model owner does not want to reveal the highly valuable DL model to the user, while the user does not wish to disclose their private data samples either. Conventional privacy-preserving deep learning solutions ask the users to send encrypted samples to the model owners, who must handle the heavy lifting of ciphertext-domain computation with homomorphic encryption. In this paper, we present a novel solution, namely, PrivDNN, which (1) offloads the computation to the user side by sharing an encrypted deep learning model with them, (2) significantly improves the efficiency of DNN evaluation using partial DNN encryption, (3) ensures model accuracy and model privacy using a core neuron selection and encryption scheme. Experimental results show that PrivDNN reduces privacy-preserving DNN inference time and memory requirement by up to 97% while maintaining model performance and privacy. Codes can be found at https://github.com/LiangqinRen/PrivDNNmore » « less
-
Fully Homomorphic Encryption (FHE) presents a paradigm-shifting framework for performing computations on encrypted data, offering revolutionary implications for privacy-preserving technologies. This paper introduces a novel hardware implementation of scheme switching between two leading FHE schemes targeting different computational needs, i.e., arithmetic HE scheme CKKS, and Boolean HE scheme FHEW. The proposed architecture facilitates dynamic switching between the schemes with improved throughput and latency compared to the software baseline. The proposed architecture computation modules support scheme switching operations involving coefficient conversion, modular switching, and key switching. We also optimize the hardware designs for the pre-processing and post-processing blocks, involving key generation, encryption, and decryption. The effectiveness of our proposed design is verified on the Xilinx U280 Datacenter Acceleration FPGA. We demonstrate that the proposed scheme switching accelerator yields a 365× performance improvement over the software counterpart.more » « less
-
The increasing use of high-dimensional imaging in medical AI raises significant privacy and security concerns. This paper presents a Bootstrap Your Own Latent (BYOL)-based self supervised learning (SSL) framework for secure image processing, ensuring compliance with HIPAA and privacy-preserving machine learning (PPML) techniques. Our method integrates federated learning, homomorphic encryption, and differential privacy to enhance security while reducing dependence on labeled data. Experimental results on the MNIST and NIH Chest Xray datasets demonstrate a classification accuracy of 97.5% and 99.99% (pre-fine-tuning 40%), with improved clustering performance using K-Means (Silhouette Score: 0.5247). These findings validate BYOL’s capability for robust, privacy-preserving image processing while emphasizing the need for fine-tuning to optimize classification performance.more » « less
-
Martelli, Pier Luigi (Ed.)Abstract MotivationThe affordability of genome sequencing and the widespread availability of genomic data have opened up new medical possibilities. Nevertheless, they also raise significant concerns regarding privacy due to the sensitive information they encompass. These privacy implications act as barriers to medical research and data availability. Researchers have proposed privacy-preserving techniques to address this, with cryptography-based methods showing the most promise. However, existing cryptography-based designs lack (i) interoperability, (ii) scalability, (iii) a high degree of privacy (i.e. compromise one to have the other), or (iv) multiparty analyses support (as most existing schemes process genomic information of each party individually). Overcoming these limitations is essential to unlocking the full potential of genomic data while ensuring privacy and data utility. Further research and development are needed to advance privacy-preserving techniques in genomics, focusing on achieving interoperability and scalability, preserving data utility, and enabling secure multiparty computation. ResultsThis study aims to overcome the limitations of current cryptography-based techniques by employing a multi-key homomorphic encryption scheme. By utilizing this scheme, we have developed a comprehensive protocol capable of conducting diverse genomic analyses. Our protocol facilitates interoperability among individual genome processing and enables multiparty tests, analyses of genomic databases, and operations involving multiple databases. Consequently, our approach represents an innovative advancement in secure genomic data processing, offering enhanced protection and privacy measures. Availability and implementationAll associated code and documentation are available at https://github.com/farahpoor/smkhe.more » « less
An official website of the United States government

