skip to main content


Title: AlertnessScanner: what do your pupils tell about your alertness
Alertness is a crucial component of our cognitive performance. Reduced alertness can negatively impact memory consolidation, productivity and safety. As a result, there has been an increasing focus on continuous assessment of alertness. The existing methods usually require users to wear sensors, fill out questionnaires, or perform response time tests periodically, in order to track their alertness. These methods may be obtrusvie to some users, and thus have limited capability. In this work, we propose AlertnessScanner, a computer-vision-based system that collects in-situ pupil information to model alertness in the wild. We conducted two in-the-wild studies to evaluate the effectiveness of our solution, and found that AlertnessScanner passively and unobtrusively assess alertness. We discuss the implications of our findings and present opportunities for mobile applications that measure and act upon changes in alertness.  more » « less
Award ID(s):
1840025
NSF-PAR ID:
10113342
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
MobileHCI '18 Proceedings of the 20th International Conference on Human-Computer Interaction with Mobile Devices and Services
Page Range / eLocation ID:
1 to 11
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background With nearly 20% of the US adult population using fitness trackers, there is an increasing focus on how physiological data from these devices can provide actionable insights about workplace performance. However, in-the-wild studies that understand how these metrics correlate with cognitive performance measures across a diverse population are lacking, and claims made by device manufacturers are vague. While there has been extensive research leading to a variety of theories on how physiological measures affect cognitive performance, virtually all such studies have been conducted in highly controlled settings and their validity in the real world is poorly understood. Objective We seek to bridge this gap by evaluating prevailing theories on the effects of a variety of sleep, activity, and heart rate parameters on cognitive performance against data collected in real-world settings. Methods We used a Fitbit Charge 3 and a smartphone app to collect different physiological and neurobehavioral task data, respectively, as part of our 6-week-long in-the-wild study. We collected data from 24 participants across multiple population groups (shift workers, regular workers, and graduate students) on different performance measures (vigilant attention and cognitive throughput). Simultaneously, we used a fitness tracker to unobtrusively obtain physiological measures that could influence these performance measures, including over 900 nights of sleep and over 1 million minutes of heart rate and physical activity metrics. We performed a repeated measures correlation (rrm) analysis to investigate which sleep and physiological markers show association with each performance measure. We also report how our findings relate to existing theories and previous observations from controlled studies. Results Daytime alertness was found to be significantly correlated with total sleep duration on the previous night (rrm=0.17, P<.001) as well as the duration of rapid eye movement (rrm=0.12, P<.001) and light sleep (rrm=0.15, P<.001). Cognitive throughput, by contrast, was not found to be significantly correlated with sleep duration but with sleep timing—a circadian phase shift toward a later sleep time corresponded with lower cognitive throughput on the following day (rrm=–0.13, P<.001). Both measures show circadian variations, but only alertness showed a decline (rrm=–0.1, P<.001) as a result of homeostatic pressure. Both heart rate and physical activity correlate positively with alertness as well as cognitive throughput. Conclusions Our findings reveal that there are significant differences in terms of which sleep-related physiological metrics influence each of the 2 performance measures. This makes the case for more targeted in-the-wild studies investigating how physiological measures from self-tracking data influence, or can be used to predict, specific aspects of cognitive performance. 
    more » « less
  2. Social media platforms curate access to information and opportunities, and so play a critical role in shaping public discourse today. The opaque nature of the algorithms these platforms use to curate content raises societal questions. Prior studies have used black-box methods led by experts or collaborative audits driven by everyday users to show that these algorithms can lead to biased or discriminatory outcomes. However, existing auditing methods face fundamental limitations because they function independent of the platforms. Concerns of potential harmful outcomes have prompted proposal of legislation in both the U.S. and the E.U. to mandate a new form of auditing where vetted external researchers get privileged access to social media platforms. Unfortunately, to date there have been no concrete technical proposals to provide such auditing, because auditing at scale risks disclosure of users' private data and platforms' proprietary algorithms. We propose a new method for platform-supported auditing that can meet the goals of the proposed legislation. The first contribution of our work is to enumerate the challenges and the limitations of existing auditing methods to implement these policies at scale. Second, we suggest that limited, privileged access to relevance estimators is the key to enabling generalizable platform-supported auditing of social media platforms by external researchers. Third, we show platform-supported auditing need not risk user privacy nor disclosure of platforms' business interests by proposing an auditing framework that protects against these risks. For a particular fairness metric, we show that ensuring privacy imposes only a small constant factor increase (6.34x as an upper bound, and 4× for typical parameters) in the number of samples required for accurate auditing. Our technical contributions, combined with ongoing legal and policy efforts, can enable public oversight into how social media platforms affect individuals and society by moving past the privacy-vs-transparency hurdle. 
    more » « less
  3. The transparency and privacy behavior of mobile browsers has remained widely unexplored by the research community. In fact, as opposed to regular Android apps, mobile browsers may present contradicting privacy behaviors. On the one end, they can have access to (and can expose) a unique combination of sensitive user data, from users’ browsing history to permission-protected personally identifiable information (PII) such as unique identifiers and geolocation. However, on the other end, they also are in a unique position to protect users’ privacy by limiting data sharing with other parties by implementing ad-blocking features. In this paper, we perform a comparative and empirical analysis on how hundreds of Android web browsers protect or expose user data during browsing sessions. To this end, we collect the largest dataset of Android browsers to date, from the Google Play Store and four Chinese app stores. Then, we developed a novel analysis pipeline that combines static and dynamic analysis methods to find a wide range of privacy-enhancing (e.g., ad-blocking) and privacy-harming behaviors (e.g., sending browsing histories to third parties, not validating TLS certificates, and exposing PII---including non-resettable identifiers---to third parties) across browsers. We find that various popular apps on both Google Play and Chinese stores have these privacy-harming behaviors, including apps that claim to be privacy-enhancing in their descriptions. Overall, our study not only provides new insights into important yet overlooked considerations for browsers’ adoption and transparency, but also that automatic app analysis systems (e.g., sandboxes) need context-specific analysis to reveal such privacy behaviors. 
    more » « less
  4. Witnessing the blooming adoption of push notifications on mobile devices, this new message delivery paradigm has become pervasive in diverse applications. Accompanying with its broad adoption, the potential security risks and privacy exposure issues raise public concerns regarding its great social impacts. This paper conducts the first attempt to exploit the mobile notification ecosystem. By dissecting its structural elements and implementation process, a comprehensive vulnerability analysis is conducted towards the complete flow of mobile notification from platform enrollment to messaging. Meanwhile, for privacy exposure, we first examine the implementation of privacy policy compliance by proposing a three-level inspection approach to guide our analysis. Then, our top-down methods from documentation analysis, application network traffic study, to static analysis expose the illicit data collection behaviors in released applications. In addition, we uncover the potential privacy inference resulted from the notification monitoring. To support our analysis, we conduct empirical studies on 12 most popular notification platforms and perform static analysis over 30,000+ applications. We discover: 1) six platforms either provide ambiguous KEY naming rules or offer vulnerable messaging APIs; 2) privacy policy compliance implementations are either stagnated at the documentation stages (8 of 12 platforms) or never implemented in apps, resulting in billions of users suffering from privacy exposure; and 3) some apps can stealthily monitor notification messages delivering to other apps, potentially incurring user privacy inference risks. Our study raises the urgent demand for better regulations of mobile notification deployment. 
    more » « less
  5. Background Inhibitory control, or inhibition, is one of the core executive functions of humans. It contributes to our attention, performance, and physical and mental well-being. Our inhibitory control is modulated by various factors and therefore fluctuates over time. Being able to continuously and unobtrusively assess our inhibitory control and understand the mediating factors may allow us to design intelligent systems that help manage our inhibitory control and ultimately our well-being. Objective The aim of this study is to investigate whether we can assess individuals’ inhibitory control using an unobtrusive and scalable approach to identify digital markers that are predictive of changes in inhibitory control. Methods We developed InhibiSense, an app that passively collects the following information: users’ behaviors based on their phone use and sensor data, the ground truths of their inhibition control measured with stop-signal tasks (SSTs) and ecological momentary assessments (EMAs), and heart rate information transmitted from a wearable heart rate monitor (Polar H10). We conducted a 4-week in-the-wild study, where participants were asked to install InhibiSense on their phone and wear a Polar H10. We used generalized estimating equation (GEE) and gradient boosting tree models fitted with features extracted from participants’ phone use and sensor data to predict their stop-signal reaction time (SSRT), an objective metric used to measure an individual’s inhibitory control, and identify the predictive digital markers. Results A total of 12 participants completed the study, and 2189 EMAs and SST responses were collected. The results from the GEE models suggest that the top digital markers positively associated with an individual’s SSRT include phone use burstiness (P=.005), the mean duration between 2 consecutive phone use sessions (P=.02), the change rate of battery level when the phone was not charged (P=.04), and the frequency of incoming calls (P=.03). The top digital markers negatively associated with SSRT include the standard deviation of acceleration (P<.001), the frequency of short phone use sessions (P<.001), the mean duration of incoming calls (P<.001), the mean decibel level of ambient noise (P=.007), and the percentage of time in which the phone was connected to the internet through a mobile network (P=.001). No significant correlation between the participants’ objective and subjective measurement of inhibitory control was found. Conclusions We identified phone-based digital markers that were predictive of changes in inhibitory control and how they were positively or negatively associated with a person’s inhibitory control. The results of this study corroborate the findings of previous studies, which suggest that inhibitory control can be assessed continuously and unobtrusively in the wild. We discussed some potential applications of the system and how technological interventions can be designed to help manage inhibitory control. 
    more » « less