skip to main content


Title: ClearTAC: Verb Tense, Aspect, and Form Classification Using Neural Nets
This paper proposes using a Bidirectional LSTM-CRF model in order to identify the tense and aspect of verbs. The information that this classifier outputs can be useful for ordering events and can provide a pre-processing step to improve efficiency of annotating this type of information. This neural network architecture has been successfully employed for other sequential labeling tasks, and we show that it significantly outperforms the rule-based tool TMV-annotator on the PropBank I dataset.  more » « less
Award ID(s):
1764048
NSF-PAR ID:
10113665
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 1st Designing Meaning Representations Workshop, DMR-2019, held in conjunction with ACL,
Page Range / eLocation ID:
136-140
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The computer science literature on identification of people using personal information paints a wide spectrum, from aggregate information that doesn’t contain information about individual people, to information that itself identifies a person. However, privacy laws and regulations often distinguish between only two types, often called personally identifiable information and de-identified information. We show that the collapse of this technological spectrum of identifiability into only two legal definitions results in the failure to encourage privacy-preserving practices. We propose a set of legal definitions that spans the spectrum. We start with anonymous information. Computer science has created anonymization algorithms, including differential privacy, that provide mathematical guarantees that a person cannot be identified. Although the California Consumer Privacy Act (CCPA) defines aggregate information, it treats aggregate information the same as de-identified information. We propose a definition of anonymous information based on the technological possibility of logical association of the information with other information. We argue for the exclusion of anonymous information from notice and consent requirements. We next consider de-identified information. Computer science has created de-identification algorithms, including generalization, that minimize (but not eliminate) the risk of re-identification. GDPR defines anonymous information but not de-identified information, and CCPA defines de-identified information but not anonymous information. The definitions do not align. We propose a definition of de-identified information based on the reasonableness of association with other information. We propose legal controls to protect against re-identification. We argue for the inclusion of de-identified information in notice requirements, but the exclusion of de-identified information from choice requirements. We next address the distinction between trackable and non-trackable information. Computer science has shown how one-time identifiers can be used to protect reasonably linkable information from being tracked over time. Although both GDPR and CCPA discuss profiling, neither formally defines it as a form of personal information, and thus both fail to adequately protect against it. We propose definitions of trackable information and non-trackable information based on the likelihood of association with information from other contexts. We propose a set of legal controls to protect against tracking. We argue for requiring stronger forms of user choice for trackable information, which will encourage the use of non-trackable information. Finally, we address the distinction between pseudonymous and reasonably identifiable information. Computer science has shown how pseudonyms can be used to reduce identification. Neither GDPR nor CCPA makes a distinction between pseudonymous and reasonable identifiable information. We propose definitions based on the reasonableness of identifiability of the information, and we propose a set of legal controls to protect against identification. We argue for requiring stronger forms of user choice for reasonably identifiable information, which will encourage the use of pseudonymous information. Our definitions of anonymous information, de-identified information, non-trackable information, trackable information, and reasonably identifiable information can replace the over-simplified distinction between personally identifiable information versus de-identified information. We hope that this full spectrum of definitions can be used in a comprehensive privacy law to tailor notice and consent requirements to the characteristics of each type of information. 
    more » « less
  2. null (Ed.)
    Drilling and milling operations are material removal processes involved in everyday conventional productions, especially in the high-speed metal cutting industry. The monitoring of tool information (wear, dynamic behavior, deformation, etc.) is essential to guarantee the success of product fabrication. Many methods have been applied to monitor the cutting tools from the information of cutting force, spindle motor current, vibration, as well as sound acoustic emission. However, those methods are indirect and sensitive to environmental noises. Here, the in-process imaging technique that can capture the cutting tool information while cutting the metal was studied. As machinists judge whether a tool is worn-out by the naked eye, utilizing the vision system can directly present the performance of the machine tools. We proposed a phase shifted strobo-stereoscopic method (Figure 1) for three-dimensional (3D) imaging. The stroboscopic instrument is usually applied for the measurement of fast-moving objects. The operation principle is as follows: when synchronizing the frequency of the light source illumination and the motion of object, the object appears to be stationary. The motion frequency of the target is transferring from the count information of the encoder signals from the working rotary spindle. If small differences are added to the frequency, the object appears to be slowly moving or rotating. This effect can be working as the source for the phase-shifting; with this phase information, the target can be whole-view 3D reconstructed by 360 degrees. The stereoscopic technique is embedded with two CCD cameras capturing images that are located bilateral symmetrically in regard to the target. The 3D scene is reconstructed by the location information of the same object points from both the left and right images. In the proposed system, an air spindle was used to secure the motion accuracy and drilling/milling speed. As shown in Figure 2, two CCDs with 10X objective lenses were installed on a linear rail with rotary stages to capture the machine tool bit raw picture for further 3D reconstruction. The overall measurement process was summarized in the flow chart (Figure 3). As the count number of encoder signals is related to the rotary speed, the input speed (unit of RPM) was set as the reference signal to control the frequency (f0) of the illumination of the LED. When the frequency was matched with the reference signal, both CCDs started to gather the pictures. With the mismatched frequency (Δf) information, a sequence of images was gathered under the phase-shifted process for a whole-view 3D reconstruction. The study in this paper was based on a 3/8’’ drilling tool performance monitoring. This paper presents the principle of the phase-shifted strobe-stereoscopic 3D imaging process. A hardware set-up is introduced, , as well as the 3D imaging algorithm. The reconstructed image analysis under different working speeds is discussed, the reconstruction resolution included. The uncertainty of the imaging process and the built-up system are also analyzed. As the input signal is the working speed, no other information from other sources is required. This proposed method can be applied as an on-machine or even in-process metrology. With the direct method of the 3D imaging machine vision system, it can directly offer the machine tool surface and fatigue information. This presented method can supplement the blank for determining the performance status of the machine tools, which further guarantees the fabrication process. 
    more » « less
  3. In social networks, a node’s position is, in and of itself, a form of social capital. Better-positioned members not only benefit from (faster) access to diverse information, but innately have more potential influence on information spread. Structural biases often arise from network formation, and can lead to significant disparities in information access based on position. Further, processes such as link recommendation can exacerbate this inequality by relying on network structure to augment connectivity. In this paper, we argue that one can understand and quantify this social capital through the lens of information flow in the network. In contrast to prior work, we consider the setting where all nodes may be sources of distinct information, and a node’s (dis)advantage takes into account its ability to access all information available on the network, not just that from a single source. We introduce three new measures of advantage (broadcast, influence, and control), which are quantified in terms of position in the network using access signatures – vectors that represent a node’s ability to share information with each other node in the network. We then consider the problem of improving equity by making interventions to increase the access of the least-advantaged nodes. Since all nodes are already sources of information in our model, we argue that edge augmentation is most appropriate for mitigating bias in the network structure, and frame a budgeted intervention problem for maximizing broadcast (minimum pairwise access) over the network. Finally, we propose heuristic strategies for selecting edge augmentations and empirically evaluate their performance on a corpus of real-world social networks. We demonstrate that a small number of interventions can not only significantly increase the broadcast measure of access for the least-advantaged nodes (over 5 times more than random), but also simultaneously improve the minimum influence. Additional analysis shows that edge augmentations targeted at improving minimum pairwise access can also dramatically shrink the gap in advantage between nodes (over ) and reduce disparities between their access signatures. 
    more » « less
  4. BACKGROUND Optical sensing devices measure the rich physical properties of an incident light beam, such as its power, polarization state, spectrum, and intensity distribution. Most conventional sensors, such as power meters, polarimeters, spectrometers, and cameras, are monofunctional and bulky. For example, classical Fourier-transform infrared spectrometers and polarimeters, which characterize the optical spectrum in the infrared and the polarization state of light, respectively, can occupy a considerable portion of an optical table. Over the past decade, the development of integrated sensing solutions by using miniaturized devices together with advanced machine-learning algorithms has accelerated rapidly, and optical sensing research has evolved into a highly interdisciplinary field that encompasses devices and materials engineering, condensed matter physics, and machine learning. To this end, future optical sensing technologies will benefit from innovations in device architecture, discoveries of new quantum materials, demonstrations of previously uncharacterized optical and optoelectronic phenomena, and rapid advances in the development of tailored machine-learning algorithms. ADVANCES Recently, a number of sensing and imaging demonstrations have emerged that differ substantially from conventional sensing schemes in the way that optical information is detected. A typical example is computational spectroscopy. In this new paradigm, a compact spectrometer first collectively captures the comprehensive spectral information of an incident light beam using multiple elements or a single element under different operational states and generates a high-dimensional photoresponse vector. An advanced algorithm then interprets the vector to achieve reconstruction of the spectrum. This scheme shifts the physical complexity of conventional grating- or interference-based spectrometers to computation. Moreover, many of the recent developments go well beyond optical spectroscopy, and we discuss them within a common framework, dubbed “geometric deep optical sensing.” The term “geometric” is intended to emphasize that in this sensing scheme, the physical properties of an unknown light beam and the corresponding photoresponses can be regarded as points in two respective high-dimensional vector spaces and that the sensing process can be considered to be a mapping from one vector space to the other. The mapping can be linear, nonlinear, or highly entangled; for the latter two cases, deep artificial neural networks represent a natural choice for the encoding and/or decoding processes, from which the term “deep” is derived. In addition to this classical geometric view, the quantum geometry of Bloch electrons in Hilbert space, such as Berry curvature and quantum metrics, is essential for the determination of the polarization-dependent photoresponses in some optical sensors. In this Review, we first present a general perspective of this sensing scheme from the viewpoint of information theory, in which the photoresponse measurement and the extraction of light properties are deemed as information-encoding and -decoding processes, respectively. We then discuss demonstrations in which a reconfigurable sensor (or an array thereof), enabled by device reconfigurability and the implementation of neural networks, can detect the power, polarization state, wavelength, and spatial features of an incident light beam. OUTLOOK As increasingly more computing resources become available, optical sensing is becoming more computational, with device reconfigurability playing a key role. On the one hand, advanced algorithms, including deep neural networks, will enable effective decoding of high-dimensional photoresponse vectors, which reduces the physical complexity of sensors. Therefore, it will be important to integrate memory cells near or within sensors to enable efficient processing and interpretation of a large amount of photoresponse data. On the other hand, analog computation based on neural networks can be performed with an array of reconfigurable devices, which enables direct multiplexing of sensing and computing functions. We anticipate that these two directions will become the engineering frontier of future deep sensing research. On the scientific frontier, exploring quantum geometric and topological properties of new quantum materials in both linear and nonlinear light-matter interactions will enrich the information-encoding pathways for deep optical sensing. In addition, deep sensing schemes will continue to benefit from the latest developments in machine learning. Future highly compact, multifunctional, reconfigurable, and intelligent sensors and imagers will find applications in medical imaging, environmental monitoring, infrared astronomy, and many other areas of our daily lives, especially in the mobile domain and the internet of things. Schematic of deep optical sensing. The n -dimensional unknown information ( w ) is encoded into an m -dimensional photoresponse vector ( x ) by a reconfigurable sensor (or an array thereof), from which w′ is reconstructed by a trained neural network ( n ′ = n and w′   ≈   w ). Alternatively, x may be directly deciphered to capture certain properties of w . Here, w , x , and w′ can be regarded as points in their respective high-dimensional vector spaces ℛ n , ℛ m , and ℛ n ′ . 
    more » « less
  5. Building Information Modelling (BIM) is an integrated informational process and plays a key role in enabling efficient planning and control of a project in the Architecture, Engineering, and Construction (AEC) domain. Industry Foundation Classes (IFC)-based BIM allows building information to be interoperable among different BIM applications. Different stakeholders take different responsibilities in a project and therefore keep different types of information to meet project requirements. In this paper, the authors proposed and adopted a six-step methodology to support BIM interoperability between architectural design and structural analysis at both AEC project level and information level, in which: (1) the intrinsic and extrinsic information transferred between architectural models and structural models were analyzed and demonstrated by a Business Process Model and Notation (BPMN) model that the authors developed; (2) the proposed technical routes with different combinations, and their applications to different project delivery methods provided new instruments to stakeholders in industry for efficient and accurate decision-making; (3) the material centered invariant signature with portability can improve information exchange between different data formats and models to support interoperable BIM applications; and (4) a developed formal material information representation and checking method was tested on a case study where its efficiency was demonstrated to outperform: (1) proprietary representations and information checking method based on a manual operation, and (2) MVD-based information checking method. The proposed invariant signatures-based material information representation and checking method brings a better efficiency for information transfer between architectural design and structural analysis, which can have significant positive effect on a project delivery, due to the frequent and iterative update of a project design. This improves the information transfer and coordination between architects and structural engineers and therefore the efficiency of the whole project. The proposed method can be extended and applied to other application phases and functions such as cost estimation, scheduling, and energy analysis. 
    more » « less