Captions play a major role in making educational videos accessible to all and are known to benefit a wide range of learners. However, many educational videos either do not have captions or have inaccurate captions. Prior work has shown the benefits of using crowdsourcing to obtain accurate captions in a cost-efficient way, though there is a lack of understanding of how learners edit captions of educational videos either individually or collaboratively. In this work, we conducted a user study where 58 learners (in a course of 387 learners) participated in the editing of captions in 89 lecture videos that were generated by Automatic Speech Recognition (ASR) technologies. For each video, different learners conducted two rounds of editing. Based on editing logs, we created a taxonomy of errors in educational video captions (e.g., Discipline-Specific, General, Equations). From the interviews, we identified individual and collaborative error editing strategies. We then further demonstrated the feasibility of applying machine learning models to assist learners in editing. Our work provides practical implications for advancing video-based learning and for educational video caption editing.
more »
« less
Perspectives on Computational Models of Learning and Forgetting
Technological developments have spawned a range of educational software that strives to enhance learning through personalized adaptation. The success of these systems depends on how accurate the knowledge state of individual learners is modeled over time. Computer scientists have been at the forefront of development for these kinds of distributed learning systems and have primarily relied on data-driven algorithms to trace knowledge acquisition in noisy and complex learning domains. Meanwhile, research psychologists have primarily relied on data collected in controlled laboratory settings to develop and validate theory-driven computational models, but have not devoted much exploration to learning in naturalistic environments. The two fields have largely operated in parallel despite considerable overlap in goals. We argue that mutual benefits would result from identifying and implementing more accurate methods to model the temporal dynamics of learning and forgetting for individual learners. Here we discuss recent efforts in developing adaptive learning technologies to highlight the strengths and weaknesses inherent in the typical approaches of both fields. We argue that a closer collaboration between the educational machine learning/data mining and cognitive psychology communities would be a productive and exciting direction for adaptive learning system application to move in.
more »
« less
- Award ID(s):
- 1631428
- PAR ID:
- 10113804
- Date Published:
- Journal Name:
- International Conference on Cognitive Modeling
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Agrawal, Garima (Ed.)Cybersecurity education is exceptionally challenging as it involves learning the complex attacks; tools and developing critical problem-solving skills to defend the systems. For a student or novice researcher in the cybersecurity domain, there is a need to design an adaptive learning strategy that can break complex tasks and concepts into simple representations. An AI-enabled automated cybersecurity education system can improve cognitive engagement and active learning. Knowledge graphs (KG) provide a visual representation in a graph that can reason and interpret from the underlying data, making them suitable for use in education and interactive learning. However, there are no publicly available datasets for the cybersecurity education domain to build such systems. The data is present as unstructured educational course material, Wiki pages, capture the flag (CTF) writeups, etc. Creating knowledge graphs from unstructured text is challenging without an ontology or annotated dataset. However, data annotation for cybersecurity needs domain experts. To address these gaps, we made three contributions in this paper. First, we propose an ontology for the cybersecurity education domain for students and novice learners. Second, we develop AISecKG, a triple dataset with cybersecurity-related entities and relations as defined by the ontology. This dataset can be used to construct knowledge graphs to teach cybersecurity and promote cognitive learning. It can also be used to build downstream applications like recommendation systems or self-learning question-answering systems for students. The dataset would also help identify malicious named entities and their probable impact. Third, using this dataset, we show a downstream application to extract custom-named entities from texts and educational material on cybersecurity.more » « less
-
Abstract Machine learning (ML) provides a powerful framework for the analysis of high‐dimensional datasets by modelling complex relationships, often encountered in modern data with many variables, cases and potentially non‐linear effects. The impact of ML methods on research and practical applications in the educational sciences is still limited, but continuously grows, as larger and more complex datasets become available through massive open online courses (MOOCs) and large‐scale investigations. The educational sciences are at a crucial pivot point, because of the anticipated impact ML methods hold for the field. To provide educational researchers with an elaborate introduction to the topic, we provide an instructional summary of the opportunities and challenges of ML for the educational sciences, show how a look at related disciplines can help learning from their experiences, and argue for a philosophical shift in model evaluation. We demonstrate how the overall quality of data analysis in educational research can benefit from these methods and show how ML can play a decisive role in the validation of empirical models. Specifically, we (1) provide an overview of the types of data suitable for ML and (2) give practical advice for the application of ML methods. In each section, we provide analytical examples and reproducible R code. Also, we provide an extensive Appendix on ML‐based applications for education. This instructional summary will help educational scientists and practitioners to prepare for the promises and threats that come with the shift towards digitisation and large‐scale assessment in education. Context and implicationsRationale for this studyIn 2020, the worldwide SARS‐COV‐2 pandemic forced the educational sciences to perform a rapid paradigm shift with classrooms going online around the world—a hardly novel but now strongly catalysed development. In the context of data‐driven education, this paper demonstrates that the widespread adoption of machine learning techniques is central for the educational sciences and shows how these methods will become crucial tools in the collection and analysis of data and in concrete educational applications. Helping to leverage the opportunities and to avoid the common pitfalls of machine learning, this paper provides educators with the theoretical, conceptual and practical essentials.Why the new findings matterThe process of teaching and learning is complex, multifaceted and dynamic. This paper contributes a seminal resource to highlight the digitisation of the educational sciences by demonstrating how new machine learning methods can be effectively and reliably used in research, education and practical application.Implications for educational researchers and policy makersThe progressing digitisation of societies around the globe and the impact of the SARS‐COV‐2 pandemic have highlighted the vulnerabilities and shortcomings of educational systems. These developments have shown the necessity to provide effective educational processes that can support sometimes overwhelmed teachers to digitally impart knowledge on the plan of many governments and policy makers. Educational scientists, corporate partners and stakeholders can make use of machine learning techniques to develop advanced, scalable educational processes that account for individual needs of learners and that can complement and support existing learning infrastructure. The proper use of machine learning methods can contribute essential applications to the educational sciences, such as (semi‐)automated assessments, algorithmic‐grading, personalised feedback and adaptive learning approaches. However, these promises are strongly tied to an at least basic understanding of the concepts of machine learning and a degree of data literacy, which has to become the standard in education and the educational sciences.Demonstrating both the promises and the challenges that are inherent to the collection and the analysis of large educational data with machine learning, this paper covers the essential topics that their application requires and provides easy‐to‐follow resources and code to facilitate the process of adoption.more » « less
-
Assessing student responses is a critical task in adaptive educational systems. More specifically, automatically evaluating students' self-explanations contributes to understanding their knowledge state which is needed for personalized instruction, the crux of adaptive educational systems. To facilitate the development of Artificial Intelligence (AI) and Machine Learning models for automated assessment of learners' self-explanations, annotated datasets are essential. In response to this need, we developed the SelfCode2.0 corpus, which consists of 3,019 pairs of student and expert explanations of Java code snippets, each annotated with semantic similarity, correctness, and completeness scores provided by experts. Alongside the dataset, we also provide performance results obtained with several baseline models based on TF-IDF and Sentence-BERT vectorial representations. This work aims to enhance the effectiveness of automated assessment tools in programming education and contribute to a better understanding and supporting student learning of programming.more » « less
-
Many people are learning programming on their own using various online resources such as educational games. Unfortunately, little is known about how to keep online educational game learners motivated throughout their game play, especially if they become disengaged or frustrated with their task. Keeping online learners engaged is essential for learning programming, as it may have lasting effects on their views and self-efficacy towards computer science. To address this issue, we created a coarse-grained frustration detector that provided users with customized, adaptive feedback to help (re)engage them with the game content. We ran a controlled experiment with 400 participants over the course of 1.5 months, with half of the players playing the original game, and the other half playing the game with the frustration detection and adaptive feed- back. We found that the users who received the adaptive feedback when frustrated completed more levels than their counterparts who did not receive this customized feedback. Based on these findings, we believe that adaptive feedback is essential in keeping educational game learners engaged, and propose future work for researchers and designers of online educational games to better support their users.more » « less
An official website of the United States government

