skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Understanding the Spatial Distribution of Welfare Impacts of Global Warming on Agriculture and Its Drivers
Abstract This paper explores the interplay between the biophysical and economic geographies of climate change impacts on agriculture. It does so by bridging the extensive literature on climate impacts on yields and physical productivity in global crop production, with the literature on the role of adaptation through international trade in determining the consequences of climate change impacts. Unlike previous work in this area, instead of using a specific crop model or a set of models, we employ a statistical meta-analysis that encompasses all studies available to the IPCC-AR5 report. This permits us to isolate specific elements of the spatially heterogeneous biophysical geography of climate impacts, including the role of initial temperature, differential patterns of warming, and varying crop responses to warming across the globe. We combine these climate impact estimates with the Global Trade Analysis Project model of global trade in order to estimate the national welfare changes that are decomposed into three components: the direct (biophysical impact) contribution to welfare, the terms of trade effect, and the allocative efficiency effect. We find that when we remove the spatial variation in climate impacts, the terms of trade impacts are cut in half. Given the inherent heterogeneity of climate impacts in agriculture, this points to the important role of trade in distributing the associated welfare impacts. When we allow the biophysical impacts to vary across the empirically estimated uncertainty range taken from the meta-analysis, we find that the welfare consequences are highly asymmetric, with much larger losses at the low end of the yield distribution. This interaction between the magnitude and heterogeneity of biophysical climate shocks and their welfare effects highlight the need for detailed representation of both in projecting climate change impacts.  more » « less
Award ID(s):
1639318
PAR ID:
10114558
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
American Journal of Agricultural Economics
Volume:
101
Issue:
5
ISSN:
0002-9092
Page Range / eLocation ID:
p. 1455-1472
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline. 
    more » « less
  2. Abstract Forests play a critical role in mitigating climate change, and, at the same time, are predicted to experience large-scale impacts of climate change that will affect the efficiency of forests in mitigation efforts. Projections of future carbon sequestration potential typically do not account for the changing economic costs of timber and agricultural production and land use change. We integrated a dynamic forward-looking economic optimization model of global land use with results from a dynamic global vegetation model and meta-analysis of climate impacts on crop yields to project future carbon sequestration in forests. We find that the direct impacts of climate change on forests, represented by changes in dieback and forest growth, and indirect effects due to lost crop productivity, together result in a net gain of 17 Gt C in aboveground forest carbon storage from 2000 to 2100. Increases in climate-driven forest growth rates will result in an 81%–99% reduction in costs of reaching a range of global forest carbon stock targets in 2100, while the increases in dieback rates are projected to raise the costs by 57%–132%. When combined, these two direct impacts are expected to reduce the global costs of climate change mitigation in forests by more than 70%. Inclusion of the third, indirect impact of climate change on forests through reduction in crop yields, and the resulting expansion of cropland, raises the costs by 11%–38% and widens the uncertainty range. While we cannot rule out the possibility of climate change increasing mitigation costs, the central outcomes of the simultaneous impacts of climate change on forests and agriculture are 64%–86% reductions in the mitigation costs. Overall, the results suggest that concerns about climate driven dieback in forests should not inhibit the ambitions of policy makers in expanding forest-based climate solutions. 
    more » « less
  3. Abstract Irrigated agriculture in snow-dependent regions contributes significantly to global food production. This study quantifies the impacts of climate change on irrigated agriculture in the snow-dependent Yakima River Basin (YRB) in the Pacific Northwest United States. Here we show that increasingly severe droughts and temperature driven reductions in growing season significantly reduces expected annual agricultural productivity. The overall reduction in mean annual productivity also dampens interannual yield variability, limiting yield-driven revenue fluctuations. Our findings show that farmers who adapt to climate change by planting improved crop varieties may potentially increase their expected mean annaul productivity in an altered climate, but remain strongly vulnerable to irrigation water shortages that substantially increase interannual yield variability (i.e., increasing revenue volatility). Our results underscore the importance for crop adaptation strategies to simultaneously capture the biophysical effects of warming as well as the institutional controls on water availability. 
    more » « less
  4. Climate anomalies and changes have complex and critical impacts on agriculture. Given global warming, the scientific community has dramatically increased research on these impacts. During 1996–2022, over 3,000 peer-reviewed papers in the Web of Science Core Collection database have investigated the fields. This study conducted a bibliometric analysis of these papers for systematic mapping and inductive understanding to comprehensively review the research’s status, focus, network, and funding. After almost 30 years, the research is now centered in quantifying climate impacts on crop yields and agriculture productivity while seeking effective adaptation solutions. The hot keywords recently emerged include poverty, food security, water resource, climate service, climate-smart agriculture, sustainability, and policy. They suggest increasing concerns on global food and water shortage and pressing needs for action to adapt to climate change and sustain agricultural productivity. Given the uncertainty of climate change and the complexity of agriculture systems, most current studies are interdisciplinary research combining various agricultural fields with climate, environmental, and socioeconomic sciences. The United States, as the world’s leading food commodity producer, has the most diverse funding agencies and provides the largest number of awards to support the research. Future priority research should take the coupled earth system approach with the food-energy-water nexus principles to provide effective, actionable decision supports at local-regional scales to sustain national agricultural productivity and quantify climate-smart agricultural practices to mitigate global warming. 
    more » « less
  5. Abstract Intensive crop growth can modify regional climate by partitioning energy to latent heating through transpiration, cooling growing season temperatures. Recent work shows that cooling associated with agriculture can dampen anthropogenic warming over breadbasket regions. However, it is unknown whether climate models reproduce crop influences on regional climate, and thus the future risk of extreme climate events over global breadbasket regions. We show that models overestimate growing season temperatures and underestimate evapotranspiration (ET) over global croplands, and that these differences increase with cropped area. We trace this warm and dry difference through each model's representation of the surface energy budget, showing that model differences in transpiration, leaf area index, and the ratio of transpiration to total ET drive the overall effect. While the implications of these model deficiencies for future projections are uncertain, they point to the importance of improving representations of crop‐climate processes to better assess breadbasket vulnerability to climate change. 
    more » « less